MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  postr Structured version   Visualization version   GIF version

Theorem postr 18337
Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
posi.b 𝐵 = (Base‘𝐾)
posi.l = (le‘𝐾)
Assertion
Ref Expression
postr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))

Proof of Theorem postr
StepHypRef Expression
1 posi.b . . 3 𝐵 = (Base‘𝐾)
2 posi.l . . 3 = (le‘𝐾)
31, 2posi 18334 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
43simp3d 1144 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  Basecbs 17233  lecple 17283  Posetcpo 18324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-poset 18330
This theorem is referenced by:  odupos  18343  plttr  18357  joinle  18401  meetle  18415  lattr  18459  omndadd2d  33081  omndadd2rd  33082  omndmul2  33085  atlatle  39343  cvratlem  39445  llncmp  39546  llncvrlpln  39582  lplncmp  39586  lplncvrlvol  39640  lvolcmp  39641  pmaple  39785
  Copyright terms: Public domain W3C validator