MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  postr Structured version   Visualization version   GIF version

Theorem postr 18228
Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
posi.b 𝐵 = (Base‘𝐾)
posi.l = (le‘𝐾)
Assertion
Ref Expression
postr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))

Proof of Theorem postr
StepHypRef Expression
1 posi.b . . 3 𝐵 = (Base‘𝐾)
2 posi.l . . 3 = (le‘𝐾)
31, 2posi 18225 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
43simp3d 1144 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  Basecbs 17122  lecple 17170  Posetcpo 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-poset 18221
This theorem is referenced by:  odupos  18234  plttr  18248  joinle  18292  meetle  18306  lattr  18352  omndadd2d  20044  omndadd2rd  20045  omndmul2  20047  atlatle  39440  cvratlem  39541  llncmp  39642  llncvrlpln  39678  lplncmp  39682  lplncvrlvol  39736  lvolcmp  39737  pmaple  39881
  Copyright terms: Public domain W3C validator