Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > postr | Structured version Visualization version GIF version |
Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011.) |
Ref | Expression |
---|---|
posi.b | ⊢ 𝐵 = (Base‘𝐾) |
posi.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
postr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | posi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | posi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | posi 17848 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) |
4 | 3 | simp3d 1146 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 class class class wbr 5067 ‘cfv 6397 Basecbs 16784 lecple 16833 Posetcpo 17838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-nul 5213 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3422 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-br 5068 df-iota 6355 df-fv 6405 df-poset 17844 |
This theorem is referenced by: odupos 17858 plttr 17872 joinle 17916 meetle 17930 lattr 17974 omndadd2d 31077 omndadd2rd 31078 omndmul2 31081 atlatle 37097 cvratlem 37198 llncmp 37299 llncvrlpln 37335 lplncmp 37339 lplncvrlvol 37393 lvolcmp 37394 pmaple 37538 |
Copyright terms: Public domain | W3C validator |