Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr01ssre Structured version   Visualization version   GIF version

Theorem pr01ssre 32608
Description: The range of the indicator function is a subset of . (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
pr01ssre {0, 1} ⊆ ℝ

Proof of Theorem pr01ssre
StepHypRef Expression
1 0re 11254 . 2 0 ∈ ℝ
2 1re 11252 . 2 1 ∈ ℝ
3 prssi 4829 . 2 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
41, 2, 3mp2an 690 1 {0, 1} ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  wss 3949  {cpr 4634  cr 11145  0cc0 11146  1c1 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-i2m1 11214  ax-1ne0 11215  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429
This theorem is referenced by:  fprodex01  32609  indsum  33673  indsumin  33674  circlemethnat  34306
  Copyright terms: Public domain W3C validator