Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr01ssre | Structured version Visualization version GIF version |
Description: The range of the indicator function is a subset of ℝ. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
Ref | Expression |
---|---|
pr01ssre | ⊢ {0, 1} ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10908 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 10906 | . 2 ⊢ 1 ∈ ℝ | |
3 | prssi 4751 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ {0, 1} ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3883 {cpr 4560 ℝcr 10801 0cc0 10802 1c1 10803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: fprodex01 31041 indsum 31889 indsumin 31890 circlemethnat 32521 |
Copyright terms: Public domain | W3C validator |