Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr01ssre Structured version   Visualization version   GIF version

Theorem pr01ssre 30310
Description: The range of the indicator function is a subset of . (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
pr01ssre {0, 1} ⊆ ℝ

Proof of Theorem pr01ssre
StepHypRef Expression
1 0re 10439 . 2 0 ∈ ℝ
2 1re 10437 . 2 1 ∈ ℝ
3 prssi 4624 . 2 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
41, 2, 3mp2an 680 1 {0, 1} ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2051  wss 3822  {cpr 4437  cr 10332  0cc0 10333  1c1 10334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2743  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-i2m1 10401  ax-1ne0 10402  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-iota 6149  df-fv 6193  df-ov 6977
This theorem is referenced by:  fprodex01  30311  indsum  30956  indsumin  30957  circlemethnat  31592
  Copyright terms: Public domain W3C validator