Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr01ssre Structured version   Visualization version   GIF version

Theorem pr01ssre 31776
Description: The range of the indicator function is a subset of . (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
pr01ssre {0, 1} ⊆ ℝ

Proof of Theorem pr01ssre
StepHypRef Expression
1 0re 11165 . 2 0 ∈ ℝ
2 1re 11163 . 2 1 ∈ ℝ
3 prssi 4785 . 2 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
41, 2, 3mp2an 691 1 {0, 1} ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wss 3914  {cpr 4592  cr 11058  0cc0 11059  1c1 11060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-i2m1 11127  ax-1ne0 11128  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-iota 6452  df-fv 6508  df-ov 7364
This theorem is referenced by:  fprodex01  31777  indsum  32684  indsumin  32685  circlemethnat  33318
  Copyright terms: Public domain W3C validator