Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr01ssre | Structured version Visualization version GIF version |
Description: The range of the indicator function is a subset of ℝ. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
Ref | Expression |
---|---|
pr01ssre | ⊢ {0, 1} ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11070 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 11068 | . 2 ⊢ 1 ∈ ℝ | |
3 | prssi 4767 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ {0, 1} ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ⊆ wss 3897 {cpr 4574 ℝcr 10963 0cc0 10964 1c1 10965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-i2m1 11032 ax-1ne0 11033 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 |
This theorem is referenced by: fprodex01 31367 indsum 32228 indsumin 32229 circlemethnat 32862 |
Copyright terms: Public domain | W3C validator |