| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pr01ssre | Structured version Visualization version GIF version | ||
| Description: The range of the indicator function is a subset of ℝ. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| pr01ssre | ⊢ {0, 1} ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11176 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11174 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | prssi 4785 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {0, 1} ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3914 {cpr 4591 ℝcr 11067 0cc0 11068 1c1 11069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: fprodex01 32750 indsum 32784 indsumin 32785 circlemethnat 34632 |
| Copyright terms: Public domain | W3C validator |