| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pr01ssre | Structured version Visualization version GIF version | ||
| Description: The range of the indicator function is a subset of ℝ. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| pr01ssre | ⊢ {0, 1} ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11114 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11112 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | prssi 4770 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {0, 1} ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ⊆ wss 3897 {cpr 4575 ℝcr 11005 0cc0 11006 1c1 11007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: fprodex01 32808 indsum 32842 indsumin 32843 circlemethnat 34654 |
| Copyright terms: Public domain | W3C validator |