Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr01ssre Structured version   Visualization version   GIF version

Theorem pr01ssre 32831
Description: The range of the indicator function is a subset of . (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
pr01ssre {0, 1} ⊆ ℝ

Proof of Theorem pr01ssre
StepHypRef Expression
1 0re 11261 . 2 0 ∈ ℝ
2 1re 11259 . 2 1 ∈ ℝ
3 prssi 4826 . 2 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
41, 2, 3mp2an 692 1 {0, 1} ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wss 3963  {cpr 4633  cr 11152  0cc0 11153  1c1 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-i2m1 11221  ax-1ne0 11222  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  fprodex01  32832  indsum  34002  indsumin  34003  circlemethnat  34635
  Copyright terms: Public domain W3C validator