Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr01ssre Structured version   Visualization version   GIF version

Theorem pr01ssre 32827
Description: The range of the indicator function is a subset of . (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
pr01ssre {0, 1} ⊆ ℝ

Proof of Theorem pr01ssre
StepHypRef Expression
1 0re 11264 . 2 0 ∈ ℝ
2 1re 11262 . 2 1 ∈ ℝ
3 prssi 4820 . 2 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
41, 2, 3mp2an 692 1 {0, 1} ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wss 3950  {cpr 4627  cr 11155  0cc0 11156  1c1 11157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-i2m1 11224  ax-1ne0 11225  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435
This theorem is referenced by:  fprodex01  32828  indsum  32847  indsumin  32848  circlemethnat  34657
  Copyright terms: Public domain W3C validator