![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr01ssre | Structured version Visualization version GIF version |
Description: The range of the indicator function is a subset of ℝ. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
Ref | Expression |
---|---|
pr01ssre | ⊢ {0, 1} ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11261 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1re 11259 | . 2 ⊢ 1 ∈ ℝ | |
3 | prssi 4826 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {0, 1} ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3963 {cpr 4633 ℝcr 11152 0cc0 11153 1c1 11154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: fprodex01 32832 indsum 34002 indsumin 34003 circlemethnat 34635 |
Copyright terms: Public domain | W3C validator |