| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pr01ssre | Structured version Visualization version GIF version | ||
| Description: The range of the indicator function is a subset of ℝ. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| pr01ssre | ⊢ {0, 1} ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11264 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1re 11262 | . 2 ⊢ 1 ∈ ℝ | |
| 3 | prssi 4820 | . 2 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ {0, 1} ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ⊆ wss 3950 {cpr 4627 ℝcr 11155 0cc0 11156 1c1 11157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-i2m1 11224 ax-1ne0 11225 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 |
| This theorem is referenced by: fprodex01 32828 indsum 32847 indsumin 32848 circlemethnat 34657 |
| Copyright terms: Public domain | W3C validator |