| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodeq02 | Structured version Visualization version GIF version | ||
| Description: If one of the factors is zero the product is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
| Ref | Expression |
|---|---|
| fprodeq02.1 | ⊢ (𝑘 = 𝐾 → 𝐵 = 𝐶) |
| fprodeq02.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodeq02.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fprodeq02.k | ⊢ (𝜑 → 𝐾 ∈ 𝐴) |
| fprodeq02.c | ⊢ (𝜑 → 𝐶 = 0) |
| Ref | Expression |
|---|---|
| fprodeq02 | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdif 4423 | . . . 4 ⊢ ({𝐾} ∩ (𝐴 ∖ {𝐾})) = ∅ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝐾} ∩ (𝐴 ∖ {𝐾})) = ∅) |
| 3 | fprodeq02.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ 𝐴) | |
| 4 | 3 | snssd 4760 | . . . . 5 ⊢ (𝜑 → {𝐾} ⊆ 𝐴) |
| 5 | undif 4433 | . . . . 5 ⊢ ({𝐾} ⊆ 𝐴 ↔ ({𝐾} ∪ (𝐴 ∖ {𝐾})) = 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . . 4 ⊢ (𝜑 → ({𝐾} ∪ (𝐴 ∖ {𝐾})) = 𝐴) |
| 7 | 6 | eqcomd 2735 | . . 3 ⊢ (𝜑 → 𝐴 = ({𝐾} ∪ (𝐴 ∖ {𝐾}))) |
| 8 | fprodeq02.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 9 | fprodeq02.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 10 | 2, 7, 8, 9 | fprodsplit 15873 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (∏𝑘 ∈ {𝐾}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵)) |
| 11 | fprodeq02.c | . . . . . 6 ⊢ (𝜑 → 𝐶 = 0) | |
| 12 | 0cnd 11108 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 13 | 11, 12 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 14 | fprodeq02.1 | . . . . . 6 ⊢ (𝑘 = 𝐾 → 𝐵 = 𝐶) | |
| 15 | 14 | prodsn 15869 | . . . . 5 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → ∏𝑘 ∈ {𝐾}𝐵 = 𝐶) |
| 16 | 3, 13, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ {𝐾}𝐵 = 𝐶) |
| 17 | 16, 11 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐾}𝐵 = 0) |
| 18 | 17 | oveq1d 7364 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐾}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵) = (0 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵)) |
| 19 | diffi 9089 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝐾}) ∈ Fin) | |
| 20 | 8, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ {𝐾}) ∈ Fin) |
| 21 | difssd 4088 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∖ {𝐾}) ⊆ 𝐴) | |
| 22 | 21 | sselda 3935 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐾})) → 𝑘 ∈ 𝐴) |
| 23 | 22, 9 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐾})) → 𝐵 ∈ ℂ) |
| 24 | 20, 23 | fprodcl 15859 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵 ∈ ℂ) |
| 25 | 24 | mul02d 11314 | . 2 ⊢ (𝜑 → (0 · ∏𝑘 ∈ (𝐴 ∖ {𝐾})𝐵) = 0) |
| 26 | 10, 18, 25 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 {csn 4577 (class class class)co 7349 Fincfn 8872 ℂcc 11007 0cc0 11009 · cmul 11014 ∏cprod 15810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-prod 15811 |
| This theorem is referenced by: fprodex01 32770 |
| Copyright terms: Public domain | W3C validator |