| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > circlemethnat | Structured version Visualization version GIF version | ||
| Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
| Ref | Expression |
|---|---|
| circlemethnat.r | ⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) |
| circlemethnat.f | ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) |
| circlemethnat.n | ⊢ 𝑁 ∈ ℕ0 |
| circlemethnat.a | ⊢ 𝐴 ⊆ ℕ |
| circlemethnat.s | ⊢ 𝑆 ∈ ℕ |
| Ref | Expression |
|---|---|
| circlemethnat | ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | circlemethnat.r | . . . 4 ⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) | |
| 2 | nnex 12138 | . . . . . . . . . . . . . 14 ⊢ ℕ ∈ V | |
| 3 | circlemethnat.a | . . . . . . . . . . . . . 14 ⊢ 𝐴 ⊆ ℕ | |
| 4 | indf 32841 | . . . . . . . . . . . . . 14 ⊢ ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1}) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . . . . . . . . 13 ⊢ ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} |
| 6 | pr01ssre 32812 | . . . . . . . . . . . . . 14 ⊢ {0, 1} ⊆ ℝ | |
| 7 | ax-resscn 11070 | . . . . . . . . . . . . . 14 ⊢ ℝ ⊆ ℂ | |
| 8 | 6, 7 | sstri 3940 | . . . . . . . . . . . . 13 ⊢ {0, 1} ⊆ ℂ |
| 9 | fss 6672 | . . . . . . . . . . . . 13 ⊢ ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) | |
| 10 | 5, 8, 9 | mp2an 692 | . . . . . . . . . . . 12 ⊢ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ |
| 11 | cnex 11094 | . . . . . . . . . . . . 13 ⊢ ℂ ∈ V | |
| 12 | 11, 2 | elmap 8801 | . . . . . . . . . . . 12 ⊢ (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) |
| 13 | 10, 12 | mpbir 231 | . . . . . . . . . . 11 ⊢ ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) |
| 14 | 13 | elexi 3460 | . . . . . . . . . 10 ⊢ ((𝟭‘ℕ)‘𝐴) ∈ V |
| 15 | 14 | fvconst2 7144 | . . . . . . . . 9 ⊢ (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
| 16 | 15 | adantl 481 | . . . . . . . 8 ⊢ (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
| 17 | 16 | fveq1d 6830 | . . . . . . 7 ⊢ (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 18 | 17 | prodeq2dv 15831 | . . . . . 6 ⊢ ((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 19 | 18 | sumeq2dv 15611 | . . . . 5 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 20 | 3 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐴 ⊆ ℕ) |
| 21 | circlemethnat.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ0 | |
| 22 | 21 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℕ0) |
| 23 | circlemethnat.s | . . . . . . . 8 ⊢ 𝑆 ∈ ℕ | |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝑆 ∈ ℕ) |
| 25 | 24 | nnnn0d 12449 | . . . . . 6 ⊢ (⊤ → 𝑆 ∈ ℕ0) |
| 26 | 20, 22, 25 | hashrepr 34659 | . . . . 5 ⊢ (⊤ → (♯‘(𝐴(repr‘𝑆)𝑁)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 27 | 19, 26 | eqtr4d 2771 | . . . 4 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = (♯‘(𝐴(repr‘𝑆)𝑁))) |
| 28 | 1, 27 | eqtr4id 2787 | . . 3 ⊢ (⊤ → 𝑅 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎))) |
| 29 | 13 | fconst6 6718 | . . . . 5 ⊢ ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ) |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (⊤ → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ)) |
| 31 | 22, 24, 30 | circlemeth 34674 | . . 3 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| 32 | fzofi 13883 | . . . . . . . 8 ⊢ (0..^𝑆) ∈ Fin | |
| 33 | 32 | a1i 11 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (0..^𝑆) ∈ Fin) |
| 34 | circlemethnat.f | . . . . . . . 8 ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) | |
| 35 | 21 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0) |
| 36 | ioossre 13309 | . . . . . . . . . . . 12 ⊢ (0(,)1) ⊆ ℝ | |
| 37 | 36, 7 | sstri 3940 | . . . . . . . . . . 11 ⊢ (0(,)1) ⊆ ℂ |
| 38 | 37 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (0(,)1) ⊆ ℂ) |
| 39 | 38 | sselda 3930 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ) |
| 40 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) |
| 41 | 35, 39, 40 | vtscl 34672 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) ∈ ℂ) |
| 42 | 34, 41 | eqeltrid 2837 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝐹 ∈ ℂ) |
| 43 | fprodconst 15887 | . . . . . . 7 ⊢ (((0..^𝑆) ∈ Fin ∧ 𝐹 ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆)))) | |
| 44 | 33, 42, 43 | syl2anc 584 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆)))) |
| 45 | 15 | adantl 481 | . . . . . . . . . 10 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
| 46 | 45 | oveq1d 7367 | . . . . . . . . 9 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁) = (((𝟭‘ℕ)‘𝐴)vts𝑁)) |
| 47 | 46 | fveq1d 6830 | . . . . . . . 8 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)) |
| 48 | 34, 47 | eqtr4id 2787 | . . . . . . 7 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐹 = (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥)) |
| 49 | 48 | prodeq2dv 15831 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥)) |
| 50 | 25 | adantr 480 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0) |
| 51 | hashfzo0 14339 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆) | |
| 52 | 50, 51 | syl 17 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (♯‘(0..^𝑆)) = 𝑆) |
| 53 | 52 | oveq2d 7368 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (𝐹↑(♯‘(0..^𝑆))) = (𝐹↑𝑆)) |
| 54 | 44, 49, 53 | 3eqtr3d 2776 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = (𝐹↑𝑆)) |
| 55 | 54 | oveq1d 7367 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
| 56 | 55 | itgeq2dv 25711 | . . 3 ⊢ (⊤ → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| 57 | 28, 31, 56 | 3eqtrd 2772 | . 2 ⊢ (⊤ → 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| 58 | 57 | mptru 1548 | 1 ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {csn 4575 {cpr 4577 × cxp 5617 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 Fincfn 8875 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 ici 11015 · cmul 11018 -cneg 11352 ℕcn 12132 2c2 12187 ℕ0cn0 12388 (,)cioo 13247 ..^cfzo 13556 ↑cexp 13970 ♯chash 14239 Σcsu 15595 ∏cprod 15812 expce 15970 πcpi 15975 ∫citg 25547 𝟭cind 32836 reprcrepr 34642 vtscvts 34669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-symdif 4202 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-acn 9842 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-prod 15813 df-ef 15976 df-sin 15978 df-cos 15979 df-pi 15981 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-ovol 25393 df-vol 25394 df-mbf 25548 df-itg1 25549 df-itg2 25550 df-ibl 25551 df-itg 25552 df-0p 25599 df-limc 25795 df-dv 25796 df-ind 32837 df-repr 34643 df-vts 34670 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |