Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemethnat Structured version   Visualization version   GIF version

Theorem circlemethnat 32621
Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
circlemethnat.r 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁))
circlemethnat.f 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)
circlemethnat.n 𝑁 ∈ ℕ0
circlemethnat.a 𝐴 ⊆ ℕ
circlemethnat.s 𝑆 ∈ ℕ
Assertion
Ref Expression
circlemethnat 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem circlemethnat
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 circlemethnat.r . . . 4 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁))
2 nnex 11979 . . . . . . . . . . . . . 14 ℕ ∈ V
3 circlemethnat.a . . . . . . . . . . . . . 14 𝐴 ⊆ ℕ
4 indf 31983 . . . . . . . . . . . . . 14 ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
52, 3, 4mp2an 689 . . . . . . . . . . . . 13 ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1}
6 pr01ssre 31138 . . . . . . . . . . . . . 14 {0, 1} ⊆ ℝ
7 ax-resscn 10928 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
86, 7sstri 3930 . . . . . . . . . . . . 13 {0, 1} ⊆ ℂ
9 fss 6617 . . . . . . . . . . . . 13 ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
105, 8, 9mp2an 689 . . . . . . . . . . . 12 ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ
11 cnex 10952 . . . . . . . . . . . . 13 ℂ ∈ V
1211, 2elmap 8659 . . . . . . . . . . . 12 (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
1310, 12mpbir 230 . . . . . . . . . . 11 ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ)
1413elexi 3451 . . . . . . . . . 10 ((𝟭‘ℕ)‘𝐴) ∈ V
1514fvconst2 7079 . . . . . . . . 9 (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
1615adantl 482 . . . . . . . 8 (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
1716fveq1d 6776 . . . . . . 7 (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
1817prodeq2dv 15633 . . . . . 6 ((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
1918sumeq2dv 15415 . . . . 5 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
203a1i 11 . . . . . 6 (⊤ → 𝐴 ⊆ ℕ)
21 circlemethnat.n . . . . . . 7 𝑁 ∈ ℕ0
2221a1i 11 . . . . . 6 (⊤ → 𝑁 ∈ ℕ0)
23 circlemethnat.s . . . . . . . 8 𝑆 ∈ ℕ
2423a1i 11 . . . . . . 7 (⊤ → 𝑆 ∈ ℕ)
2524nnnn0d 12293 . . . . . 6 (⊤ → 𝑆 ∈ ℕ0)
2620, 22, 25hashrepr 32605 . . . . 5 (⊤ → (♯‘(𝐴(repr‘𝑆)𝑁)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
2719, 26eqtr4d 2781 . . . 4 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (♯‘(𝐴(repr‘𝑆)𝑁)))
281, 27eqtr4id 2797 . . 3 (⊤ → 𝑅 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)))
2913fconst6 6664 . . . . 5 ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ)
3029a1i 11 . . . 4 (⊤ → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ))
3122, 24, 30circlemeth 32620 . . 3 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
32 fzofi 13694 . . . . . . . 8 (0..^𝑆) ∈ Fin
3332a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (0..^𝑆) ∈ Fin)
34 circlemethnat.f . . . . . . . 8 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)
3521a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
36 ioossre 13140 . . . . . . . . . . . 12 (0(,)1) ⊆ ℝ
3736, 7sstri 3930 . . . . . . . . . . 11 (0(,)1) ⊆ ℂ
3837a1i 11 . . . . . . . . . 10 (⊤ → (0(,)1) ⊆ ℂ)
3938sselda 3921 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
4010a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
4135, 39, 40vtscl 32618 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) ∈ ℂ)
4234, 41eqeltrid 2843 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝐹 ∈ ℂ)
43 fprodconst 15688 . . . . . . 7 (((0..^𝑆) ∈ Fin ∧ 𝐹 ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆))))
4433, 42, 43syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆))))
4515adantl 482 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
4645oveq1d 7290 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁) = (((𝟭‘ℕ)‘𝐴)vts𝑁))
4746fveq1d 6776 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥))
4834, 47eqtr4id 2797 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐹 = (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥))
4948prodeq2dv 15633 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥))
5025adantr 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0)
51 hashfzo0 14145 . . . . . . . 8 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
5250, 51syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (♯‘(0..^𝑆)) = 𝑆)
5352oveq2d 7291 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (𝐹↑(♯‘(0..^𝑆))) = (𝐹𝑆))
5444, 49, 533eqtr3d 2786 . . . . 5 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = (𝐹𝑆))
5554oveq1d 7290 . . . 4 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
5655itgeq2dv 24946 . . 3 (⊤ → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
5728, 31, 563eqtrd 2782 . 2 (⊤ → 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
5857mptru 1546 1 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wtru 1540  wcel 2106  Vcvv 3432  wss 3887  {csn 4561  {cpr 4563   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   · cmul 10876  -cneg 11206  cn 11973  2c2 12028  0cn0 12233  (,)cioo 13079  ..^cfzo 13382  cexp 13782  chash 14044  Σcsu 15397  cprod 15615  expce 15771  πcpi 15776  citg 24782  𝟭cind 31978  reprcrepr 32588  vtscvts 32615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031  df-ind 31979  df-repr 32589  df-vts 32616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator