| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > circlemethnat | Structured version Visualization version GIF version | ||
| Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
| Ref | Expression |
|---|---|
| circlemethnat.r | ⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) |
| circlemethnat.f | ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) |
| circlemethnat.n | ⊢ 𝑁 ∈ ℕ0 |
| circlemethnat.a | ⊢ 𝐴 ⊆ ℕ |
| circlemethnat.s | ⊢ 𝑆 ∈ ℕ |
| Ref | Expression |
|---|---|
| circlemethnat | ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | circlemethnat.r | . . . 4 ⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) | |
| 2 | nnex 12152 | . . . . . . . . . . . . . 14 ⊢ ℕ ∈ V | |
| 3 | circlemethnat.a | . . . . . . . . . . . . . 14 ⊢ 𝐴 ⊆ ℕ | |
| 4 | indf 32811 | . . . . . . . . . . . . . 14 ⊢ ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1}) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . . . . . . . . 13 ⊢ ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} |
| 6 | pr01ssre 32782 | . . . . . . . . . . . . . 14 ⊢ {0, 1} ⊆ ℝ | |
| 7 | ax-resscn 11085 | . . . . . . . . . . . . . 14 ⊢ ℝ ⊆ ℂ | |
| 8 | 6, 7 | sstri 3947 | . . . . . . . . . . . . 13 ⊢ {0, 1} ⊆ ℂ |
| 9 | fss 6672 | . . . . . . . . . . . . 13 ⊢ ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) | |
| 10 | 5, 8, 9 | mp2an 692 | . . . . . . . . . . . 12 ⊢ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ |
| 11 | cnex 11109 | . . . . . . . . . . . . 13 ⊢ ℂ ∈ V | |
| 12 | 11, 2 | elmap 8805 | . . . . . . . . . . . 12 ⊢ (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) |
| 13 | 10, 12 | mpbir 231 | . . . . . . . . . . 11 ⊢ ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) |
| 14 | 13 | elexi 3461 | . . . . . . . . . 10 ⊢ ((𝟭‘ℕ)‘𝐴) ∈ V |
| 15 | 14 | fvconst2 7144 | . . . . . . . . 9 ⊢ (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
| 16 | 15 | adantl 481 | . . . . . . . 8 ⊢ (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
| 17 | 16 | fveq1d 6828 | . . . . . . 7 ⊢ (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 18 | 17 | prodeq2dv 15847 | . . . . . 6 ⊢ ((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 19 | 18 | sumeq2dv 15627 | . . . . 5 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 20 | 3 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐴 ⊆ ℕ) |
| 21 | circlemethnat.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ0 | |
| 22 | 21 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℕ0) |
| 23 | circlemethnat.s | . . . . . . . 8 ⊢ 𝑆 ∈ ℕ | |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝑆 ∈ ℕ) |
| 25 | 24 | nnnn0d 12463 | . . . . . 6 ⊢ (⊤ → 𝑆 ∈ ℕ0) |
| 26 | 20, 22, 25 | hashrepr 34592 | . . . . 5 ⊢ (⊤ → (♯‘(𝐴(repr‘𝑆)𝑁)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 27 | 19, 26 | eqtr4d 2767 | . . . 4 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = (♯‘(𝐴(repr‘𝑆)𝑁))) |
| 28 | 1, 27 | eqtr4id 2783 | . . 3 ⊢ (⊤ → 𝑅 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎))) |
| 29 | 13 | fconst6 6718 | . . . . 5 ⊢ ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ) |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (⊤ → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ)) |
| 31 | 22, 24, 30 | circlemeth 34607 | . . 3 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| 32 | fzofi 13899 | . . . . . . . 8 ⊢ (0..^𝑆) ∈ Fin | |
| 33 | 32 | a1i 11 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (0..^𝑆) ∈ Fin) |
| 34 | circlemethnat.f | . . . . . . . 8 ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) | |
| 35 | 21 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0) |
| 36 | ioossre 13328 | . . . . . . . . . . . 12 ⊢ (0(,)1) ⊆ ℝ | |
| 37 | 36, 7 | sstri 3947 | . . . . . . . . . . 11 ⊢ (0(,)1) ⊆ ℂ |
| 38 | 37 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (0(,)1) ⊆ ℂ) |
| 39 | 38 | sselda 3937 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ) |
| 40 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) |
| 41 | 35, 39, 40 | vtscl 34605 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) ∈ ℂ) |
| 42 | 34, 41 | eqeltrid 2832 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝐹 ∈ ℂ) |
| 43 | fprodconst 15903 | . . . . . . 7 ⊢ (((0..^𝑆) ∈ Fin ∧ 𝐹 ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆)))) | |
| 44 | 33, 42, 43 | syl2anc 584 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆)))) |
| 45 | 15 | adantl 481 | . . . . . . . . . 10 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
| 46 | 45 | oveq1d 7368 | . . . . . . . . 9 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁) = (((𝟭‘ℕ)‘𝐴)vts𝑁)) |
| 47 | 46 | fveq1d 6828 | . . . . . . . 8 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)) |
| 48 | 34, 47 | eqtr4id 2783 | . . . . . . 7 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐹 = (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥)) |
| 49 | 48 | prodeq2dv 15847 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥)) |
| 50 | 25 | adantr 480 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0) |
| 51 | hashfzo0 14355 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆) | |
| 52 | 50, 51 | syl 17 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (♯‘(0..^𝑆)) = 𝑆) |
| 53 | 52 | oveq2d 7369 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (𝐹↑(♯‘(0..^𝑆))) = (𝐹↑𝑆)) |
| 54 | 44, 49, 53 | 3eqtr3d 2772 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = (𝐹↑𝑆)) |
| 55 | 54 | oveq1d 7368 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
| 56 | 55 | itgeq2dv 25699 | . . 3 ⊢ (⊤ → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| 57 | 28, 31, 56 | 3eqtrd 2768 | . 2 ⊢ (⊤ → 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| 58 | 57 | mptru 1547 | 1 ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 {csn 4579 {cpr 4581 × cxp 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 ici 11030 · cmul 11033 -cneg 11366 ℕcn 12146 2c2 12201 ℕ0cn0 12402 (,)cioo 13266 ..^cfzo 13575 ↑cexp 13986 ♯chash 14255 Σcsu 15611 ∏cprod 15828 expce 15986 πcpi 15991 ∫citg 25535 𝟭cind 32806 reprcrepr 34575 vtscvts 34602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-symdif 4206 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-prod 15829 df-ef 15992 df-sin 15994 df-cos 15995 df-pi 15997 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-ovol 25381 df-vol 25382 df-mbf 25536 df-itg1 25537 df-itg2 25538 df-ibl 25539 df-itg 25540 df-0p 25587 df-limc 25783 df-dv 25784 df-ind 32807 df-repr 34576 df-vts 34603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |