![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > circlemethnat | Structured version Visualization version GIF version |
Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
Ref | Expression |
---|---|
circlemethnat.r | ⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) |
circlemethnat.f | ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) |
circlemethnat.n | ⊢ 𝑁 ∈ ℕ0 |
circlemethnat.a | ⊢ 𝐴 ⊆ ℕ |
circlemethnat.s | ⊢ 𝑆 ∈ ℕ |
Ref | Expression |
---|---|
circlemethnat | ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | circlemethnat.r | . . . 4 ⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) | |
2 | nnex 12299 | . . . . . . . . . . . . . 14 ⊢ ℕ ∈ V | |
3 | circlemethnat.a | . . . . . . . . . . . . . 14 ⊢ 𝐴 ⊆ ℕ | |
4 | indf 33979 | . . . . . . . . . . . . . 14 ⊢ ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1}) | |
5 | 2, 3, 4 | mp2an 691 | . . . . . . . . . . . . 13 ⊢ ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} |
6 | pr01ssre 32828 | . . . . . . . . . . . . . 14 ⊢ {0, 1} ⊆ ℝ | |
7 | ax-resscn 11241 | . . . . . . . . . . . . . 14 ⊢ ℝ ⊆ ℂ | |
8 | 6, 7 | sstri 4018 | . . . . . . . . . . . . 13 ⊢ {0, 1} ⊆ ℂ |
9 | fss 6763 | . . . . . . . . . . . . 13 ⊢ ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) | |
10 | 5, 8, 9 | mp2an 691 | . . . . . . . . . . . 12 ⊢ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ |
11 | cnex 11265 | . . . . . . . . . . . . 13 ⊢ ℂ ∈ V | |
12 | 11, 2 | elmap 8929 | . . . . . . . . . . . 12 ⊢ (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) |
13 | 10, 12 | mpbir 231 | . . . . . . . . . . 11 ⊢ ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) |
14 | 13 | elexi 3511 | . . . . . . . . . 10 ⊢ ((𝟭‘ℕ)‘𝐴) ∈ V |
15 | 14 | fvconst2 7241 | . . . . . . . . 9 ⊢ (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
16 | 15 | adantl 481 | . . . . . . . 8 ⊢ (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
17 | 16 | fveq1d 6922 | . . . . . . 7 ⊢ (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
18 | 17 | prodeq2dv 15970 | . . . . . 6 ⊢ ((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
19 | 18 | sumeq2dv 15750 | . . . . 5 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
20 | 3 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐴 ⊆ ℕ) |
21 | circlemethnat.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ0 | |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℕ0) |
23 | circlemethnat.s | . . . . . . . 8 ⊢ 𝑆 ∈ ℕ | |
24 | 23 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝑆 ∈ ℕ) |
25 | 24 | nnnn0d 12613 | . . . . . 6 ⊢ (⊤ → 𝑆 ∈ ℕ0) |
26 | 20, 22, 25 | hashrepr 34602 | . . . . 5 ⊢ (⊤ → (♯‘(𝐴(repr‘𝑆)𝑁)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
27 | 19, 26 | eqtr4d 2783 | . . . 4 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = (♯‘(𝐴(repr‘𝑆)𝑁))) |
28 | 1, 27 | eqtr4id 2799 | . . 3 ⊢ (⊤ → 𝑅 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎))) |
29 | 13 | fconst6 6811 | . . . . 5 ⊢ ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ) |
30 | 29 | a1i 11 | . . . 4 ⊢ (⊤ → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ)) |
31 | 22, 24, 30 | circlemeth 34617 | . . 3 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
32 | fzofi 14025 | . . . . . . . 8 ⊢ (0..^𝑆) ∈ Fin | |
33 | 32 | a1i 11 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (0..^𝑆) ∈ Fin) |
34 | circlemethnat.f | . . . . . . . 8 ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) | |
35 | 21 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0) |
36 | ioossre 13468 | . . . . . . . . . . . 12 ⊢ (0(,)1) ⊆ ℝ | |
37 | 36, 7 | sstri 4018 | . . . . . . . . . . 11 ⊢ (0(,)1) ⊆ ℂ |
38 | 37 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (0(,)1) ⊆ ℂ) |
39 | 38 | sselda 4008 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ) |
40 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) |
41 | 35, 39, 40 | vtscl 34615 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) ∈ ℂ) |
42 | 34, 41 | eqeltrid 2848 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝐹 ∈ ℂ) |
43 | fprodconst 16026 | . . . . . . 7 ⊢ (((0..^𝑆) ∈ Fin ∧ 𝐹 ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆)))) | |
44 | 33, 42, 43 | syl2anc 583 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆)))) |
45 | 15 | adantl 481 | . . . . . . . . . 10 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
46 | 45 | oveq1d 7463 | . . . . . . . . 9 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁) = (((𝟭‘ℕ)‘𝐴)vts𝑁)) |
47 | 46 | fveq1d 6922 | . . . . . . . 8 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)) |
48 | 34, 47 | eqtr4id 2799 | . . . . . . 7 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐹 = (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥)) |
49 | 48 | prodeq2dv 15970 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥)) |
50 | 25 | adantr 480 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0) |
51 | hashfzo0 14479 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆) | |
52 | 50, 51 | syl 17 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (♯‘(0..^𝑆)) = 𝑆) |
53 | 52 | oveq2d 7464 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (𝐹↑(♯‘(0..^𝑆))) = (𝐹↑𝑆)) |
54 | 44, 49, 53 | 3eqtr3d 2788 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = (𝐹↑𝑆)) |
55 | 54 | oveq1d 7463 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
56 | 55 | itgeq2dv 25837 | . . 3 ⊢ (⊤ → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
57 | 28, 31, 56 | 3eqtrd 2784 | . 2 ⊢ (⊤ → 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
58 | 57 | mptru 1544 | 1 ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {csn 4648 {cpr 4650 × cxp 5698 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Fincfn 9003 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 ici 11186 · cmul 11189 -cneg 11521 ℕcn 12293 2c2 12348 ℕ0cn0 12553 (,)cioo 13407 ..^cfzo 13711 ↑cexp 14112 ♯chash 14379 Σcsu 15734 ∏cprod 15951 expce 16109 πcpi 16114 ∫citg 25672 𝟭cind 33974 reprcrepr 34585 vtscvts 34612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-symdif 4272 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-prod 15952 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 df-limc 25921 df-dv 25922 df-ind 33975 df-repr 34586 df-vts 34613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |