Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemethnat Structured version   Visualization version   GIF version

Theorem circlemethnat 32022
Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
circlemethnat.r 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁))
circlemethnat.f 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)
circlemethnat.n 𝑁 ∈ ℕ0
circlemethnat.a 𝐴 ⊆ ℕ
circlemethnat.s 𝑆 ∈ ℕ
Assertion
Ref Expression
circlemethnat 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem circlemethnat
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 circlemethnat.r . . . 4 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁))
2 nnex 11631 . . . . . . . . . . . . . 14 ℕ ∈ V
3 circlemethnat.a . . . . . . . . . . . . . 14 𝐴 ⊆ ℕ
4 indf 31384 . . . . . . . . . . . . . 14 ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
52, 3, 4mp2an 691 . . . . . . . . . . . . 13 ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1}
6 pr01ssre 30566 . . . . . . . . . . . . . 14 {0, 1} ⊆ ℝ
7 ax-resscn 10583 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
86, 7sstri 3924 . . . . . . . . . . . . 13 {0, 1} ⊆ ℂ
9 fss 6501 . . . . . . . . . . . . 13 ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
105, 8, 9mp2an 691 . . . . . . . . . . . 12 ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ
11 cnex 10607 . . . . . . . . . . . . 13 ℂ ∈ V
1211, 2elmap 8418 . . . . . . . . . . . 12 (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
1310, 12mpbir 234 . . . . . . . . . . 11 ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ)
1413elexi 3460 . . . . . . . . . 10 ((𝟭‘ℕ)‘𝐴) ∈ V
1514fvconst2 6943 . . . . . . . . 9 (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
1615adantl 485 . . . . . . . 8 (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
1716fveq1d 6647 . . . . . . 7 (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
1817prodeq2dv 15269 . . . . . 6 ((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
1918sumeq2dv 15052 . . . . 5 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
203a1i 11 . . . . . 6 (⊤ → 𝐴 ⊆ ℕ)
21 circlemethnat.n . . . . . . 7 𝑁 ∈ ℕ0
2221a1i 11 . . . . . 6 (⊤ → 𝑁 ∈ ℕ0)
23 circlemethnat.s . . . . . . . 8 𝑆 ∈ ℕ
2423a1i 11 . . . . . . 7 (⊤ → 𝑆 ∈ ℕ)
2524nnnn0d 11943 . . . . . 6 (⊤ → 𝑆 ∈ ℕ0)
2620, 22, 25hashrepr 32006 . . . . 5 (⊤ → (♯‘(𝐴(repr‘𝑆)𝑁)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
2719, 26eqtr4d 2836 . . . 4 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (♯‘(𝐴(repr‘𝑆)𝑁)))
281, 27eqtr4id 2852 . . 3 (⊤ → 𝑅 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)))
2913fconst6 6543 . . . . 5 ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ)
3029a1i 11 . . . 4 (⊤ → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ))
3122, 24, 30circlemeth 32021 . . 3 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
32 fzofi 13337 . . . . . . . 8 (0..^𝑆) ∈ Fin
3332a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (0..^𝑆) ∈ Fin)
34 circlemethnat.f . . . . . . . 8 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)
3521a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
36 ioossre 12786 . . . . . . . . . . . 12 (0(,)1) ⊆ ℝ
3736, 7sstri 3924 . . . . . . . . . . 11 (0(,)1) ⊆ ℂ
3837a1i 11 . . . . . . . . . 10 (⊤ → (0(,)1) ⊆ ℂ)
3938sselda 3915 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
4010a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
4135, 39, 40vtscl 32019 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) ∈ ℂ)
4234, 41eqeltrid 2894 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝐹 ∈ ℂ)
43 fprodconst 15324 . . . . . . 7 (((0..^𝑆) ∈ Fin ∧ 𝐹 ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆))))
4433, 42, 43syl2anc 587 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆))))
4515adantl 485 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
4645oveq1d 7150 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁) = (((𝟭‘ℕ)‘𝐴)vts𝑁))
4746fveq1d 6647 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥))
4834, 47eqtr4id 2852 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐹 = (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥))
4948prodeq2dv 15269 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥))
5025adantr 484 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0)
51 hashfzo0 13787 . . . . . . . 8 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
5250, 51syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (♯‘(0..^𝑆)) = 𝑆)
5352oveq2d 7151 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (𝐹↑(♯‘(0..^𝑆))) = (𝐹𝑆))
5444, 49, 533eqtr3d 2841 . . . . 5 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = (𝐹𝑆))
5554oveq1d 7150 . . . 4 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
5655itgeq2dv 24385 . . 3 (⊤ → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
5728, 31, 563eqtrd 2837 . 2 (⊤ → 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
5857mptru 1545 1 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wtru 1539  wcel 2111  Vcvv 3441  wss 3881  {csn 4525  {cpr 4527   × cxp 5517  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   · cmul 10531  -cneg 10860  cn 11625  2c2 11680  0cn0 11885  (,)cioo 12726  ..^cfzo 13028  cexp 13425  chash 13686  Σcsu 15034  cprod 15251  expce 15407  πcpi 15412  citg 24222  𝟭cind 31379  reprcrepr 31989  vtscvts 32016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-symdif 4169  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-prod 15252  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-limc 24469  df-dv 24470  df-ind 31380  df-repr 31990  df-vts 32017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator