Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemethnat Structured version   Visualization version   GIF version

Theorem circlemethnat 32727
Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
circlemethnat.r 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁))
circlemethnat.f 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)
circlemethnat.n 𝑁 ∈ ℕ0
circlemethnat.a 𝐴 ⊆ ℕ
circlemethnat.s 𝑆 ∈ ℕ
Assertion
Ref Expression
circlemethnat 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem circlemethnat
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 circlemethnat.r . . . 4 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁))
2 nnex 12049 . . . . . . . . . . . . . 14 ℕ ∈ V
3 circlemethnat.a . . . . . . . . . . . . . 14 𝐴 ⊆ ℕ
4 indf 32089 . . . . . . . . . . . . . 14 ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
52, 3, 4mp2an 689 . . . . . . . . . . . . 13 ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1}
6 pr01ssre 31246 . . . . . . . . . . . . . 14 {0, 1} ⊆ ℝ
7 ax-resscn 10998 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
86, 7sstri 3939 . . . . . . . . . . . . 13 {0, 1} ⊆ ℂ
9 fss 6652 . . . . . . . . . . . . 13 ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
105, 8, 9mp2an 689 . . . . . . . . . . . 12 ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ
11 cnex 11022 . . . . . . . . . . . . 13 ℂ ∈ V
1211, 2elmap 8705 . . . . . . . . . . . 12 (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
1310, 12mpbir 230 . . . . . . . . . . 11 ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ)
1413elexi 3460 . . . . . . . . . 10 ((𝟭‘ℕ)‘𝐴) ∈ V
1514fvconst2 7116 . . . . . . . . 9 (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
1615adantl 482 . . . . . . . 8 (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
1716fveq1d 6811 . . . . . . 7 (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
1817prodeq2dv 15702 . . . . . 6 ((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
1918sumeq2dv 15484 . . . . 5 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
203a1i 11 . . . . . 6 (⊤ → 𝐴 ⊆ ℕ)
21 circlemethnat.n . . . . . . 7 𝑁 ∈ ℕ0
2221a1i 11 . . . . . 6 (⊤ → 𝑁 ∈ ℕ0)
23 circlemethnat.s . . . . . . . 8 𝑆 ∈ ℕ
2423a1i 11 . . . . . . 7 (⊤ → 𝑆 ∈ ℕ)
2524nnnn0d 12363 . . . . . 6 (⊤ → 𝑆 ∈ ℕ0)
2620, 22, 25hashrepr 32711 . . . . 5 (⊤ → (♯‘(𝐴(repr‘𝑆)𝑁)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
2719, 26eqtr4d 2780 . . . 4 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (♯‘(𝐴(repr‘𝑆)𝑁)))
281, 27eqtr4id 2796 . . 3 (⊤ → 𝑅 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)))
2913fconst6 6699 . . . . 5 ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ)
3029a1i 11 . . . 4 (⊤ → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ))
3122, 24, 30circlemeth 32726 . . 3 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
32 fzofi 13764 . . . . . . . 8 (0..^𝑆) ∈ Fin
3332a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (0..^𝑆) ∈ Fin)
34 circlemethnat.f . . . . . . . 8 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)
3521a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
36 ioossre 13210 . . . . . . . . . . . 12 (0(,)1) ⊆ ℝ
3736, 7sstri 3939 . . . . . . . . . . 11 (0(,)1) ⊆ ℂ
3837a1i 11 . . . . . . . . . 10 (⊤ → (0(,)1) ⊆ ℂ)
3938sselda 3930 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
4010a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
4135, 39, 40vtscl 32724 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) ∈ ℂ)
4234, 41eqeltrid 2842 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝐹 ∈ ℂ)
43 fprodconst 15757 . . . . . . 7 (((0..^𝑆) ∈ Fin ∧ 𝐹 ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆))))
4433, 42, 43syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆))))
4515adantl 482 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
4645oveq1d 7328 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁) = (((𝟭‘ℕ)‘𝐴)vts𝑁))
4746fveq1d 6811 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥))
4834, 47eqtr4id 2796 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐹 = (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥))
4948prodeq2dv 15702 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥))
5025adantr 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0)
51 hashfzo0 14214 . . . . . . . 8 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
5250, 51syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (♯‘(0..^𝑆)) = 𝑆)
5352oveq2d 7329 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (𝐹↑(♯‘(0..^𝑆))) = (𝐹𝑆))
5444, 49, 533eqtr3d 2785 . . . . 5 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = (𝐹𝑆))
5554oveq1d 7328 . . . 4 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
5655itgeq2dv 25017 . . 3 (⊤ → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
5728, 31, 563eqtrd 2781 . 2 (⊤ → 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
5857mptru 1547 1 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1540  wtru 1541  wcel 2105  Vcvv 3441  wss 3896  {csn 4569  {cpr 4571   × cxp 5603  wf 6459  cfv 6463  (class class class)co 7313  m cmap 8661  Fincfn 8779  cc 10939  cr 10940  0cc0 10941  1c1 10942  ici 10943   · cmul 10946  -cneg 11276  cn 12043  2c2 12098  0cn0 12303  (,)cioo 13149  ..^cfzo 13452  cexp 13852  chash 14114  Σcsu 15466  cprod 15684  expce 15840  πcpi 15845  citg 24853  𝟭cind 32084  reprcrepr 32694  vtscvts 32721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-inf2 9467  ax-cc 10261  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019  ax-addf 11020  ax-mulf 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-symdif 4186  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-iin 4938  df-disj 5051  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-ofr 7572  df-om 7756  df-1st 7874  df-2nd 7875  df-supp 8023  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-2o 8343  df-oadd 8346  df-omul 8347  df-er 8544  df-map 8663  df-pm 8664  df-ixp 8732  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-fsupp 9197  df-fi 9238  df-sup 9269  df-inf 9270  df-oi 9337  df-dju 9727  df-card 9765  df-acn 9768  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-z 12390  df-dec 12508  df-uz 12653  df-q 12759  df-rp 12801  df-xneg 12918  df-xadd 12919  df-xmul 12920  df-ioo 13153  df-ioc 13154  df-ico 13155  df-icc 13156  df-fz 13310  df-fzo 13453  df-fl 13582  df-mod 13660  df-seq 13792  df-exp 13853  df-fac 14058  df-bc 14087  df-hash 14115  df-shft 14847  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-limsup 15249  df-clim 15266  df-rlim 15267  df-sum 15467  df-prod 15685  df-ef 15846  df-sin 15848  df-cos 15849  df-pi 15851  df-struct 16915  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-ress 17009  df-plusg 17042  df-mulr 17043  df-starv 17044  df-sca 17045  df-vsca 17046  df-ip 17047  df-tset 17048  df-ple 17049  df-ds 17051  df-unif 17052  df-hom 17053  df-cco 17054  df-rest 17200  df-topn 17201  df-0g 17219  df-gsum 17220  df-topgen 17221  df-pt 17222  df-prds 17225  df-xrs 17280  df-qtop 17285  df-imas 17286  df-xps 17288  df-mre 17362  df-mrc 17363  df-acs 17365  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-submnd 18498  df-mulg 18768  df-cntz 18990  df-cmn 19455  df-psmet 20660  df-xmet 20661  df-met 20662  df-bl 20663  df-mopn 20664  df-fbas 20665  df-fg 20666  df-cnfld 20669  df-top 22114  df-topon 22131  df-topsp 22153  df-bases 22167  df-cld 22241  df-ntr 22242  df-cls 22243  df-nei 22320  df-lp 22358  df-perf 22359  df-cn 22449  df-cnp 22450  df-haus 22537  df-cmp 22609  df-tx 22784  df-hmeo 22977  df-fil 23068  df-fm 23160  df-flim 23161  df-flf 23162  df-xms 23544  df-ms 23545  df-tms 23546  df-cncf 24112  df-ovol 24699  df-vol 24700  df-mbf 24854  df-itg1 24855  df-itg2 24856  df-ibl 24857  df-itg 24858  df-0p 24905  df-limc 25101  df-dv 25102  df-ind 32085  df-repr 32695  df-vts 32722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator