Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemethnat Structured version   Visualization version   GIF version

Theorem circlemethnat 34634
Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
circlemethnat.r 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁))
circlemethnat.f 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)
circlemethnat.n 𝑁 ∈ ℕ0
circlemethnat.a 𝐴 ⊆ ℕ
circlemethnat.s 𝑆 ∈ ℕ
Assertion
Ref Expression
circlemethnat 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem circlemethnat
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 circlemethnat.r . . . 4 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁))
2 nnex 12269 . . . . . . . . . . . . . 14 ℕ ∈ V
3 circlemethnat.a . . . . . . . . . . . . . 14 𝐴 ⊆ ℕ
4 indf 33995 . . . . . . . . . . . . . 14 ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
52, 3, 4mp2an 692 . . . . . . . . . . . . 13 ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1}
6 pr01ssre 32830 . . . . . . . . . . . . . 14 {0, 1} ⊆ ℝ
7 ax-resscn 11209 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
86, 7sstri 4004 . . . . . . . . . . . . 13 {0, 1} ⊆ ℂ
9 fss 6752 . . . . . . . . . . . . 13 ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
105, 8, 9mp2an 692 . . . . . . . . . . . 12 ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ
11 cnex 11233 . . . . . . . . . . . . 13 ℂ ∈ V
1211, 2elmap 8909 . . . . . . . . . . . 12 (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
1310, 12mpbir 231 . . . . . . . . . . 11 ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ)
1413elexi 3500 . . . . . . . . . 10 ((𝟭‘ℕ)‘𝐴) ∈ V
1514fvconst2 7223 . . . . . . . . 9 (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
1615adantl 481 . . . . . . . 8 (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
1716fveq1d 6908 . . . . . . 7 (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
1817prodeq2dv 15954 . . . . . 6 ((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
1918sumeq2dv 15734 . . . . 5 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
203a1i 11 . . . . . 6 (⊤ → 𝐴 ⊆ ℕ)
21 circlemethnat.n . . . . . . 7 𝑁 ∈ ℕ0
2221a1i 11 . . . . . 6 (⊤ → 𝑁 ∈ ℕ0)
23 circlemethnat.s . . . . . . . 8 𝑆 ∈ ℕ
2423a1i 11 . . . . . . 7 (⊤ → 𝑆 ∈ ℕ)
2524nnnn0d 12584 . . . . . 6 (⊤ → 𝑆 ∈ ℕ0)
2620, 22, 25hashrepr 34618 . . . . 5 (⊤ → (♯‘(𝐴(repr‘𝑆)𝑁)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
2719, 26eqtr4d 2777 . . . 4 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (♯‘(𝐴(repr‘𝑆)𝑁)))
281, 27eqtr4id 2793 . . 3 (⊤ → 𝑅 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)))
2913fconst6 6798 . . . . 5 ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ)
3029a1i 11 . . . 4 (⊤ → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ))
3122, 24, 30circlemeth 34633 . . 3 (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
32 fzofi 14011 . . . . . . . 8 (0..^𝑆) ∈ Fin
3332a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (0..^𝑆) ∈ Fin)
34 circlemethnat.f . . . . . . . 8 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)
3521a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
36 ioossre 13444 . . . . . . . . . . . 12 (0(,)1) ⊆ ℝ
3736, 7sstri 4004 . . . . . . . . . . 11 (0(,)1) ⊆ ℂ
3837a1i 11 . . . . . . . . . 10 (⊤ → (0(,)1) ⊆ ℂ)
3938sselda 3994 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
4010a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
4135, 39, 40vtscl 34631 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) ∈ ℂ)
4234, 41eqeltrid 2842 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝐹 ∈ ℂ)
43 fprodconst 16010 . . . . . . 7 (((0..^𝑆) ∈ Fin ∧ 𝐹 ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆))))
4433, 42, 43syl2anc 584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆))))
4515adantl 481 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
4645oveq1d 7445 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁) = (((𝟭‘ℕ)‘𝐴)vts𝑁))
4746fveq1d 6908 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥))
4834, 47eqtr4id 2793 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐹 = (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥))
4948prodeq2dv 15954 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥))
5025adantr 480 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0)
51 hashfzo0 14465 . . . . . . . 8 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
5250, 51syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (♯‘(0..^𝑆)) = 𝑆)
5352oveq2d 7446 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (𝐹↑(♯‘(0..^𝑆))) = (𝐹𝑆))
5444, 49, 533eqtr3d 2782 . . . . 5 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = (𝐹𝑆))
5554oveq1d 7445 . . . 4 ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
5655itgeq2dv 25831 . . 3 (⊤ → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
5728, 31, 563eqtrd 2778 . 2 (⊤ → 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
5857mptru 1543 1 𝑅 = ∫(0(,)1)((𝐹𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wtru 1537  wcel 2105  Vcvv 3477  wss 3962  {csn 4630  {cpr 4632   × cxp 5686  wf 6558  cfv 6562  (class class class)co 7430  m cmap 8864  Fincfn 8983  cc 11150  cr 11151  0cc0 11152  1c1 11153  ici 11154   · cmul 11157  -cneg 11490  cn 12263  2c2 12318  0cn0 12523  (,)cioo 13383  ..^cfzo 13690  cexp 14098  chash 14365  Σcsu 15718  cprod 15935  expce 16093  πcpi 16098  citg 25666  𝟭cind 33990  reprcrepr 34601  vtscvts 34628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-symdif 4258  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-prod 15936  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-ibl 25670  df-itg 25671  df-0p 25718  df-limc 25915  df-dv 25916  df-ind 33991  df-repr 34602  df-vts 34629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator