| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > circlemethnat | Structured version Visualization version GIF version | ||
| Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
| Ref | Expression |
|---|---|
| circlemethnat.r | ⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) |
| circlemethnat.f | ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) |
| circlemethnat.n | ⊢ 𝑁 ∈ ℕ0 |
| circlemethnat.a | ⊢ 𝐴 ⊆ ℕ |
| circlemethnat.s | ⊢ 𝑆 ∈ ℕ |
| Ref | Expression |
|---|---|
| circlemethnat | ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | circlemethnat.r | . . . 4 ⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) | |
| 2 | nnex 12199 | . . . . . . . . . . . . . 14 ⊢ ℕ ∈ V | |
| 3 | circlemethnat.a | . . . . . . . . . . . . . 14 ⊢ 𝐴 ⊆ ℕ | |
| 4 | indf 32785 | . . . . . . . . . . . . . 14 ⊢ ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1}) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . . . . . . . . 13 ⊢ ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} |
| 6 | pr01ssre 32756 | . . . . . . . . . . . . . 14 ⊢ {0, 1} ⊆ ℝ | |
| 7 | ax-resscn 11132 | . . . . . . . . . . . . . 14 ⊢ ℝ ⊆ ℂ | |
| 8 | 6, 7 | sstri 3959 | . . . . . . . . . . . . 13 ⊢ {0, 1} ⊆ ℂ |
| 9 | fss 6707 | . . . . . . . . . . . . 13 ⊢ ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) | |
| 10 | 5, 8, 9 | mp2an 692 | . . . . . . . . . . . 12 ⊢ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ |
| 11 | cnex 11156 | . . . . . . . . . . . . 13 ⊢ ℂ ∈ V | |
| 12 | 11, 2 | elmap 8847 | . . . . . . . . . . . 12 ⊢ (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) |
| 13 | 10, 12 | mpbir 231 | . . . . . . . . . . 11 ⊢ ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) |
| 14 | 13 | elexi 3473 | . . . . . . . . . 10 ⊢ ((𝟭‘ℕ)‘𝐴) ∈ V |
| 15 | 14 | fvconst2 7181 | . . . . . . . . 9 ⊢ (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
| 16 | 15 | adantl 481 | . . . . . . . 8 ⊢ (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
| 17 | 16 | fveq1d 6863 | . . . . . . 7 ⊢ (((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 18 | 17 | prodeq2dv 15895 | . . . . . 6 ⊢ ((⊤ ∧ 𝑐 ∈ (ℕ(repr‘𝑆)𝑁)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 19 | 18 | sumeq2dv 15675 | . . . . 5 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 20 | 3 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐴 ⊆ ℕ) |
| 21 | circlemethnat.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ0 | |
| 22 | 21 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℕ0) |
| 23 | circlemethnat.s | . . . . . . . 8 ⊢ 𝑆 ∈ ℕ | |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝑆 ∈ ℕ) |
| 25 | 24 | nnnn0d 12510 | . . . . . 6 ⊢ (⊤ → 𝑆 ∈ ℕ0) |
| 26 | 20, 22, 25 | hashrepr 34623 | . . . . 5 ⊢ (⊤ → (♯‘(𝐴(repr‘𝑆)𝑁)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 27 | 19, 26 | eqtr4d 2768 | . . . 4 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = (♯‘(𝐴(repr‘𝑆)𝑁))) |
| 28 | 1, 27 | eqtr4id 2784 | . . 3 ⊢ (⊤ → 𝑅 = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎))) |
| 29 | 13 | fconst6 6753 | . . . . 5 ⊢ ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ) |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (⊤ → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ)) |
| 31 | 22, 24, 30 | circlemeth 34638 | . . 3 ⊢ (⊤ → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐‘𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| 32 | fzofi 13946 | . . . . . . . 8 ⊢ (0..^𝑆) ∈ Fin | |
| 33 | 32 | a1i 11 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (0..^𝑆) ∈ Fin) |
| 34 | circlemethnat.f | . . . . . . . 8 ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) | |
| 35 | 21 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0) |
| 36 | ioossre 13375 | . . . . . . . . . . . 12 ⊢ (0(,)1) ⊆ ℝ | |
| 37 | 36, 7 | sstri 3959 | . . . . . . . . . . 11 ⊢ (0(,)1) ⊆ ℂ |
| 38 | 37 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (0(,)1) ⊆ ℂ) |
| 39 | 38 | sselda 3949 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ) |
| 40 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ) |
| 41 | 35, 39, 40 | vtscl 34636 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) ∈ ℂ) |
| 42 | 34, 41 | eqeltrid 2833 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝐹 ∈ ℂ) |
| 43 | fprodconst 15951 | . . . . . . 7 ⊢ (((0..^𝑆) ∈ Fin ∧ 𝐹 ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆)))) | |
| 44 | 33, 42, 43 | syl2anc 584 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = (𝐹↑(♯‘(0..^𝑆)))) |
| 45 | 15 | adantl 481 | . . . . . . . . . 10 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴)) |
| 46 | 45 | oveq1d 7405 | . . . . . . . . 9 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁) = (((𝟭‘ℕ)‘𝐴)vts𝑁)) |
| 47 | 46 | fveq1d 6863 | . . . . . . . 8 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥)) |
| 48 | 34, 47 | eqtr4id 2784 | . . . . . . 7 ⊢ (((⊤ ∧ 𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐹 = (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥)) |
| 49 | 48 | prodeq2dv 15895 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)𝐹 = ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥)) |
| 50 | 25 | adantr 480 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → 𝑆 ∈ ℕ0) |
| 51 | hashfzo0 14402 | . . . . . . . 8 ⊢ (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆) | |
| 52 | 50, 51 | syl 17 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (♯‘(0..^𝑆)) = 𝑆) |
| 53 | 52 | oveq2d 7406 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (𝐹↑(♯‘(0..^𝑆))) = (𝐹↑𝑆)) |
| 54 | 44, 49, 53 | 3eqtr3d 2773 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) = (𝐹↑𝑆)) |
| 55 | 54 | oveq1d 7405 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))) |
| 56 | 55 | itgeq2dv 25690 | . . 3 ⊢ (⊤ → ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| 57 | 28, 31, 56 | 3eqtrd 2769 | . 2 ⊢ (⊤ → 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) |
| 58 | 57 | mptru 1547 | 1 ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 {csn 4592 {cpr 4594 × cxp 5639 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 ici 11077 · cmul 11080 -cneg 11413 ℕcn 12193 2c2 12248 ℕ0cn0 12449 (,)cioo 13313 ..^cfzo 13622 ↑cexp 14033 ♯chash 14302 Σcsu 15659 ∏cprod 15876 expce 16034 πcpi 16039 ∫citg 25526 𝟭cind 32780 reprcrepr 34606 vtscvts 34633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-symdif 4219 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-prod 15877 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-ovol 25372 df-vol 25373 df-mbf 25527 df-itg1 25528 df-itg2 25529 df-ibl 25530 df-itg 25531 df-0p 25578 df-limc 25774 df-dv 25775 df-ind 32781 df-repr 34607 df-vts 34634 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |