Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsum Structured version   Visualization version   GIF version

Theorem indsum 32790
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Hypotheses
Ref Expression
indsum.1 (𝜑𝑂 ∈ Fin)
indsum.2 (𝜑𝐴𝑂)
indsum.3 ((𝜑𝑥𝑂) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
indsum (𝜑 → Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑂   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem indsum
StepHypRef Expression
1 indsum.2 . . 3 (𝜑𝐴𝑂)
21sselda 3948 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝑂)
3 pr01ssre 32755 . . . . . . 7 {0, 1} ⊆ ℝ
4 indsum.1 . . . . . . . . 9 (𝜑𝑂 ∈ Fin)
5 indf 32784 . . . . . . . . 9 ((𝑂 ∈ Fin ∧ 𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
64, 1, 5syl2anc 584 . . . . . . . 8 (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
76ffvelcdmda 7058 . . . . . . 7 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ {0, 1})
83, 7sselid 3946 . . . . . 6 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℝ)
98recnd 11208 . . . . 5 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℂ)
10 indsum.3 . . . . 5 ((𝜑𝑥𝑂) → 𝐵 ∈ ℂ)
119, 10mulcld 11200 . . . 4 ((𝜑𝑥𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ)
122, 11syldan 591 . . 3 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ)
134adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑂 ∈ Fin)
141adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝐴𝑂)
15 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑥 ∈ (𝑂𝐴))
16 ind0 32787 . . . . . 6 ((𝑂 ∈ Fin ∧ 𝐴𝑂𝑥 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0)
1713, 14, 15, 16syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0)
1817oveq1d 7404 . . . 4 ((𝜑𝑥 ∈ (𝑂𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (0 · 𝐵))
19 difssd 4102 . . . . . 6 (𝜑 → (𝑂𝐴) ⊆ 𝑂)
2019sselda 3948 . . . . 5 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑥𝑂)
2110mul02d 11378 . . . . 5 ((𝜑𝑥𝑂) → (0 · 𝐵) = 0)
2220, 21syldan 591 . . . 4 ((𝜑𝑥 ∈ (𝑂𝐴)) → (0 · 𝐵) = 0)
2318, 22eqtrd 2765 . . 3 ((𝜑𝑥 ∈ (𝑂𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 0)
241, 12, 23, 4fsumss 15697 . 2 (𝜑 → Σ𝑥𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵))
254adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝑂 ∈ Fin)
261adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴𝑂)
27 simpr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
28 ind1 32786 . . . . . 6 ((𝑂 ∈ Fin ∧ 𝐴𝑂𝑥𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1)
2925, 26, 27, 28syl3anc 1373 . . . . 5 ((𝜑𝑥𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1)
3029oveq1d 7404 . . . 4 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (1 · 𝐵))
3110mullidd 11198 . . . . 5 ((𝜑𝑥𝑂) → (1 · 𝐵) = 𝐵)
322, 31syldan 591 . . . 4 ((𝜑𝑥𝐴) → (1 · 𝐵) = 𝐵)
3330, 32eqtrd 2765 . . 3 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 𝐵)
3433sumeq2dv 15674 . 2 (𝜑 → Σ𝑥𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
3524, 34eqtr3d 2767 1 (𝜑 → Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3913  wss 3916  {cpr 4593  wf 6509  cfv 6513  (class class class)co 7389  Fincfn 8920  cc 11072  cr 11073  0cc0 11074  1c1 11075   · cmul 11079  Σcsu 15658  𝟭cind 32779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-sum 15659  df-ind 32780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator