Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsum Structured version   Visualization version   GIF version

Theorem indsum 32793
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Hypotheses
Ref Expression
indsum.1 (𝜑𝑂 ∈ Fin)
indsum.2 (𝜑𝐴𝑂)
indsum.3 ((𝜑𝑥𝑂) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
indsum (𝜑 → Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑂   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem indsum
StepHypRef Expression
1 indsum.2 . . 3 (𝜑𝐴𝑂)
21sselda 3965 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝑂)
3 pr01ssre 32773 . . . . . . 7 {0, 1} ⊆ ℝ
4 indsum.1 . . . . . . . . 9 (𝜑𝑂 ∈ Fin)
5 indf 32787 . . . . . . . . 9 ((𝑂 ∈ Fin ∧ 𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
64, 1, 5syl2anc 584 . . . . . . . 8 (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
76ffvelcdmda 7085 . . . . . . 7 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ {0, 1})
83, 7sselid 3963 . . . . . 6 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℝ)
98recnd 11272 . . . . 5 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℂ)
10 indsum.3 . . . . 5 ((𝜑𝑥𝑂) → 𝐵 ∈ ℂ)
119, 10mulcld 11264 . . . 4 ((𝜑𝑥𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ)
122, 11syldan 591 . . 3 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ)
134adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑂 ∈ Fin)
141adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝐴𝑂)
15 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑥 ∈ (𝑂𝐴))
16 ind0 32790 . . . . . 6 ((𝑂 ∈ Fin ∧ 𝐴𝑂𝑥 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0)
1713, 14, 15, 16syl3anc 1372 . . . . 5 ((𝜑𝑥 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0)
1817oveq1d 7429 . . . 4 ((𝜑𝑥 ∈ (𝑂𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (0 · 𝐵))
19 difssd 4119 . . . . . 6 (𝜑 → (𝑂𝐴) ⊆ 𝑂)
2019sselda 3965 . . . . 5 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑥𝑂)
2110mul02d 11442 . . . . 5 ((𝜑𝑥𝑂) → (0 · 𝐵) = 0)
2220, 21syldan 591 . . . 4 ((𝜑𝑥 ∈ (𝑂𝐴)) → (0 · 𝐵) = 0)
2318, 22eqtrd 2769 . . 3 ((𝜑𝑥 ∈ (𝑂𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 0)
241, 12, 23, 4fsumss 15744 . 2 (𝜑 → Σ𝑥𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵))
254adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝑂 ∈ Fin)
261adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴𝑂)
27 simpr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
28 ind1 32789 . . . . . 6 ((𝑂 ∈ Fin ∧ 𝐴𝑂𝑥𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1)
2925, 26, 27, 28syl3anc 1372 . . . . 5 ((𝜑𝑥𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1)
3029oveq1d 7429 . . . 4 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (1 · 𝐵))
3110mullidd 11262 . . . . 5 ((𝜑𝑥𝑂) → (1 · 𝐵) = 𝐵)
322, 31syldan 591 . . . 4 ((𝜑𝑥𝐴) → (1 · 𝐵) = 𝐵)
3330, 32eqtrd 2769 . . 3 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 𝐵)
3433sumeq2dv 15721 . 2 (𝜑 → Σ𝑥𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
3524, 34eqtr3d 2771 1 (𝜑 → Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cdif 3930  wss 3933  {cpr 4610  wf 6538  cfv 6542  (class class class)co 7414  Fincfn 8968  cc 11136  cr 11137  0cc0 11138  1c1 11139   · cmul 11143  Σcsu 15705  𝟭cind 32782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-fz 13531  df-fzo 13678  df-seq 14026  df-exp 14086  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-ind 32783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator