Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > indsum | Structured version Visualization version GIF version |
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
Ref | Expression |
---|---|
indsum.1 | ⊢ (𝜑 → 𝑂 ∈ Fin) |
indsum.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
indsum.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
indsum | ⊢ (𝜑 → Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indsum.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | |
2 | 1 | sselda 3917 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑂) |
3 | pr01ssre 31040 | . . . . . . 7 ⊢ {0, 1} ⊆ ℝ | |
4 | indsum.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ Fin) | |
5 | indf 31883 | . . . . . . . . 9 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
6 | 4, 1, 5 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
7 | 6 | ffvelrnda 6943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ {0, 1}) |
8 | 3, 7 | sselid 3915 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℝ) |
9 | 8 | recnd 10934 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℂ) |
10 | indsum.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝐵 ∈ ℂ) | |
11 | 9, 10 | mulcld 10926 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ) |
12 | 2, 11 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ) |
13 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑂 ∈ Fin) |
14 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝐴 ⊆ 𝑂) |
15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑥 ∈ (𝑂 ∖ 𝐴)) | |
16 | ind0 31886 | . . . . . 6 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0) | |
17 | 13, 14, 15, 16 | syl3anc 1369 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0) |
18 | 17 | oveq1d 7270 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (0 · 𝐵)) |
19 | difssd 4063 | . . . . . 6 ⊢ (𝜑 → (𝑂 ∖ 𝐴) ⊆ 𝑂) | |
20 | 19 | sselda 3917 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑥 ∈ 𝑂) |
21 | 10 | mul02d 11103 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (0 · 𝐵) = 0) |
22 | 20, 21 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (0 · 𝐵) = 0) |
23 | 18, 22 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 0) |
24 | 1, 12, 23, 4 | fsumss 15365 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵)) |
25 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑂 ∈ Fin) |
26 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝑂) |
27 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
28 | ind1 31885 | . . . . . 6 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) | |
29 | 25, 26, 27, 28 | syl3anc 1369 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) |
30 | 29 | oveq1d 7270 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (1 · 𝐵)) |
31 | 10 | mulid2d 10924 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (1 · 𝐵) = 𝐵) |
32 | 2, 31 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 · 𝐵) = 𝐵) |
33 | 30, 32 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 𝐵) |
34 | 33 | sumeq2dv 15343 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
35 | 24, 34 | eqtr3d 2780 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 {cpr 4560 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 Σcsu 15325 𝟭cind 31878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-ind 31879 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |