![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indsum | Structured version Visualization version GIF version |
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
Ref | Expression |
---|---|
indsum.1 | ⊢ (𝜑 → 𝑂 ∈ Fin) |
indsum.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
indsum.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
indsum | ⊢ (𝜑 → Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indsum.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | |
2 | 1 | sselda 3858 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑂) |
3 | pr01ssre 30293 | . . . . . . 7 ⊢ {0, 1} ⊆ ℝ | |
4 | indsum.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ Fin) | |
5 | indf 30924 | . . . . . . . . 9 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
6 | 4, 1, 5 | syl2anc 576 | . . . . . . . 8 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
7 | 6 | ffvelrnda 6676 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ {0, 1}) |
8 | 3, 7 | sseldi 3856 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℝ) |
9 | 8 | recnd 10468 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℂ) |
10 | indsum.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝐵 ∈ ℂ) | |
11 | 9, 10 | mulcld 10460 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ) |
12 | 2, 11 | syldan 582 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ) |
13 | 4 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑂 ∈ Fin) |
14 | 1 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝐴 ⊆ 𝑂) |
15 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑥 ∈ (𝑂 ∖ 𝐴)) | |
16 | ind0 30927 | . . . . . 6 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0) | |
17 | 13, 14, 15, 16 | syl3anc 1351 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0) |
18 | 17 | oveq1d 6991 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (0 · 𝐵)) |
19 | difssd 3999 | . . . . . 6 ⊢ (𝜑 → (𝑂 ∖ 𝐴) ⊆ 𝑂) | |
20 | 19 | sselda 3858 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑥 ∈ 𝑂) |
21 | 10 | mul02d 10638 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (0 · 𝐵) = 0) |
22 | 20, 21 | syldan 582 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (0 · 𝐵) = 0) |
23 | 18, 22 | eqtrd 2814 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 0) |
24 | 1, 12, 23, 4 | fsumss 14942 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵)) |
25 | 4 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑂 ∈ Fin) |
26 | 1 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝑂) |
27 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
28 | ind1 30926 | . . . . . 6 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) | |
29 | 25, 26, 27, 28 | syl3anc 1351 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) |
30 | 29 | oveq1d 6991 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (1 · 𝐵)) |
31 | 10 | mulid2d 10458 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (1 · 𝐵) = 𝐵) |
32 | 2, 31 | syldan 582 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 · 𝐵) = 𝐵) |
33 | 30, 32 | eqtrd 2814 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 𝐵) |
34 | 33 | sumeq2dv 14920 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
35 | 24, 34 | eqtr3d 2816 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∖ cdif 3826 ⊆ wss 3829 {cpr 4443 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 Fincfn 8306 ℂcc 10333 ℝcr 10334 0cc0 10335 1c1 10336 · cmul 10340 Σcsu 14903 𝟭cind 30919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-sup 8701 df-oi 8769 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-n0 11708 df-z 11794 df-uz 12059 df-rp 12205 df-fz 12709 df-fzo 12850 df-seq 13185 df-exp 13245 df-hash 13506 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-clim 14706 df-sum 14904 df-ind 30920 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |