| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indsum | Structured version Visualization version GIF version | ||
| Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| indsum.1 | ⊢ (𝜑 → 𝑂 ∈ Fin) |
| indsum.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
| indsum.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| indsum | ⊢ (𝜑 → Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indsum.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | |
| 2 | 1 | sselda 3934 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑂) |
| 3 | pr01ssre 32805 | . . . . . . 7 ⊢ {0, 1} ⊆ ℝ | |
| 4 | indsum.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ Fin) | |
| 5 | indf 32834 | . . . . . . . . 9 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
| 6 | 4, 1, 5 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| 7 | 6 | ffvelcdmda 7017 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ {0, 1}) |
| 8 | 3, 7 | sselid 3932 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℝ) |
| 9 | 8 | recnd 11140 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℂ) |
| 10 | indsum.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝐵 ∈ ℂ) | |
| 11 | 9, 10 | mulcld 11132 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ) |
| 12 | 2, 11 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ) |
| 13 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑂 ∈ Fin) |
| 14 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝐴 ⊆ 𝑂) |
| 15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑥 ∈ (𝑂 ∖ 𝐴)) | |
| 16 | ind0 32837 | . . . . . 6 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0) | |
| 17 | 13, 14, 15, 16 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0) |
| 18 | 17 | oveq1d 7361 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (0 · 𝐵)) |
| 19 | difssd 4087 | . . . . . 6 ⊢ (𝜑 → (𝑂 ∖ 𝐴) ⊆ 𝑂) | |
| 20 | 19 | sselda 3934 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑥 ∈ 𝑂) |
| 21 | 10 | mul02d 11311 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (0 · 𝐵) = 0) |
| 22 | 20, 21 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (0 · 𝐵) = 0) |
| 23 | 18, 22 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 0) |
| 24 | 1, 12, 23, 4 | fsumss 15632 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵)) |
| 25 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑂 ∈ Fin) |
| 26 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝑂) |
| 27 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 28 | ind1 32836 | . . . . . 6 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) | |
| 29 | 25, 26, 27, 28 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) |
| 30 | 29 | oveq1d 7361 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (1 · 𝐵)) |
| 31 | 10 | mullidd 11130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (1 · 𝐵) = 𝐵) |
| 32 | 2, 31 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 · 𝐵) = 𝐵) |
| 33 | 30, 32 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 𝐵) |
| 34 | 33 | sumeq2dv 15609 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
| 35 | 24, 34 | eqtr3d 2768 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ⊆ wss 3902 {cpr 4578 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 · cmul 11011 Σcsu 15593 𝟭cind 32829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-ind 32830 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |