| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indsum | Structured version Visualization version GIF version | ||
| Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| indsum.1 | ⊢ (𝜑 → 𝑂 ∈ Fin) |
| indsum.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
| indsum.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| indsum | ⊢ (𝜑 → Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indsum.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | |
| 2 | 1 | sselda 3948 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑂) |
| 3 | pr01ssre 32755 | . . . . . . 7 ⊢ {0, 1} ⊆ ℝ | |
| 4 | indsum.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ Fin) | |
| 5 | indf 32784 | . . . . . . . . 9 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
| 6 | 4, 1, 5 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| 7 | 6 | ffvelcdmda 7058 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ {0, 1}) |
| 8 | 3, 7 | sselid 3946 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℝ) |
| 9 | 8 | recnd 11208 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℂ) |
| 10 | indsum.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝐵 ∈ ℂ) | |
| 11 | 9, 10 | mulcld 11200 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ) |
| 12 | 2, 11 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ) |
| 13 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑂 ∈ Fin) |
| 14 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝐴 ⊆ 𝑂) |
| 15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑥 ∈ (𝑂 ∖ 𝐴)) | |
| 16 | ind0 32787 | . . . . . 6 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0) | |
| 17 | 13, 14, 15, 16 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0) |
| 18 | 17 | oveq1d 7404 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (0 · 𝐵)) |
| 19 | difssd 4102 | . . . . . 6 ⊢ (𝜑 → (𝑂 ∖ 𝐴) ⊆ 𝑂) | |
| 20 | 19 | sselda 3948 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑥 ∈ 𝑂) |
| 21 | 10 | mul02d 11378 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (0 · 𝐵) = 0) |
| 22 | 20, 21 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (0 · 𝐵) = 0) |
| 23 | 18, 22 | eqtrd 2765 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 0) |
| 24 | 1, 12, 23, 4 | fsumss 15697 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵)) |
| 25 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑂 ∈ Fin) |
| 26 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝑂) |
| 27 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 28 | ind1 32786 | . . . . . 6 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) | |
| 29 | 25, 26, 27, 28 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) |
| 30 | 29 | oveq1d 7404 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (1 · 𝐵)) |
| 31 | 10 | mullidd 11198 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (1 · 𝐵) = 𝐵) |
| 32 | 2, 31 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 · 𝐵) = 𝐵) |
| 33 | 30, 32 | eqtrd 2765 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 𝐵) |
| 34 | 33 | sumeq2dv 15674 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
| 35 | 24, 34 | eqtr3d 2767 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3913 ⊆ wss 3916 {cpr 4593 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 Fincfn 8920 ℂcc 11072 ℝcr 11073 0cc0 11074 1c1 11075 · cmul 11079 Σcsu 15658 𝟭cind 32779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fz 13475 df-fzo 13622 df-seq 13973 df-exp 14033 df-hash 14302 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-clim 15460 df-sum 15659 df-ind 32780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |