Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsum Structured version   Visualization version   GIF version

Theorem indsum 31655
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Hypotheses
Ref Expression
indsum.1 (𝜑𝑂 ∈ Fin)
indsum.2 (𝜑𝐴𝑂)
indsum.3 ((𝜑𝑥𝑂) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
indsum (𝜑 → Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑂   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem indsum
StepHypRef Expression
1 indsum.2 . . 3 (𝜑𝐴𝑂)
21sselda 3887 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝑂)
3 pr01ssre 30812 . . . . . . 7 {0, 1} ⊆ ℝ
4 indsum.1 . . . . . . . . 9 (𝜑𝑂 ∈ Fin)
5 indf 31649 . . . . . . . . 9 ((𝑂 ∈ Fin ∧ 𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
64, 1, 5syl2anc 587 . . . . . . . 8 (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
76ffvelrnda 6882 . . . . . . 7 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ {0, 1})
83, 7sseldi 3885 . . . . . 6 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℝ)
98recnd 10826 . . . . 5 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℂ)
10 indsum.3 . . . . 5 ((𝜑𝑥𝑂) → 𝐵 ∈ ℂ)
119, 10mulcld 10818 . . . 4 ((𝜑𝑥𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ)
122, 11syldan 594 . . 3 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ)
134adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑂 ∈ Fin)
141adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝐴𝑂)
15 simpr 488 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑥 ∈ (𝑂𝐴))
16 ind0 31652 . . . . . 6 ((𝑂 ∈ Fin ∧ 𝐴𝑂𝑥 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0)
1713, 14, 15, 16syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0)
1817oveq1d 7206 . . . 4 ((𝜑𝑥 ∈ (𝑂𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (0 · 𝐵))
19 difssd 4033 . . . . . 6 (𝜑 → (𝑂𝐴) ⊆ 𝑂)
2019sselda 3887 . . . . 5 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑥𝑂)
2110mul02d 10995 . . . . 5 ((𝜑𝑥𝑂) → (0 · 𝐵) = 0)
2220, 21syldan 594 . . . 4 ((𝜑𝑥 ∈ (𝑂𝐴)) → (0 · 𝐵) = 0)
2318, 22eqtrd 2771 . . 3 ((𝜑𝑥 ∈ (𝑂𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 0)
241, 12, 23, 4fsumss 15254 . 2 (𝜑 → Σ𝑥𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵))
254adantr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝑂 ∈ Fin)
261adantr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴𝑂)
27 simpr 488 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
28 ind1 31651 . . . . . 6 ((𝑂 ∈ Fin ∧ 𝐴𝑂𝑥𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1)
2925, 26, 27, 28syl3anc 1373 . . . . 5 ((𝜑𝑥𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1)
3029oveq1d 7206 . . . 4 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (1 · 𝐵))
3110mulid2d 10816 . . . . 5 ((𝜑𝑥𝑂) → (1 · 𝐵) = 𝐵)
322, 31syldan 594 . . . 4 ((𝜑𝑥𝐴) → (1 · 𝐵) = 𝐵)
3330, 32eqtrd 2771 . . 3 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 𝐵)
3433sumeq2dv 15232 . 2 (𝜑 → Σ𝑥𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
3524, 34eqtr3d 2773 1 (𝜑 → Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cdif 3850  wss 3853  {cpr 4529  wf 6354  cfv 6358  (class class class)co 7191  Fincfn 8604  cc 10692  cr 10693  0cc0 10694  1c1 10695   · cmul 10699  Σcsu 15214  𝟭cind 31644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215  df-ind 31645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator