| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexzrexnn0 | Structured version Visualization version GIF version | ||
| Description: Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| Ref | Expression |
|---|---|
| rexzrexnn0.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| rexzrexnn0.2 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexzrexnn0 | ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 12608 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))) | |
| 2 | 1 | simprbi 496 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)) |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)) |
| 4 | simpr 484 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
| 5 | simplr 768 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝜑) | |
| 6 | rexzrexnn0.1 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | equcoms 2020 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| 8 | 7 | bicomd 223 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
| 9 | 8 | rspcev 3606 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝜑) → ∃𝑦 ∈ ℕ0 𝜓) |
| 10 | 4, 5, 9 | syl2anc 584 | . . . . . . 7 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → ∃𝑦 ∈ ℕ0 𝜓) |
| 11 | 10 | ex 412 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜓)) |
| 12 | simpr 484 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → -𝑥 ∈ ℕ0) | |
| 13 | zcn 12598 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 14 | 13 | negnegd 11590 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℤ → --𝑥 = 𝑥) |
| 15 | 14 | eqcomd 2742 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ ℤ → 𝑥 = --𝑥) |
| 16 | negeq 11479 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = -𝑥 → -𝑦 = --𝑥) | |
| 17 | 16 | eqeq2d 2747 | . . . . . . . . . . . . 13 ⊢ (𝑦 = -𝑥 → (𝑥 = -𝑦 ↔ 𝑥 = --𝑥)) |
| 18 | 15, 17 | syl5ibrcom 247 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℤ → (𝑦 = -𝑥 → 𝑥 = -𝑦)) |
| 19 | 18 | imp 406 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦) |
| 20 | rexzrexnn0.2 | . . . . . . . . . . 11 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) | |
| 21 | 19, 20 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑 ↔ 𝜒)) |
| 22 | 21 | bicomd 223 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜒 ↔ 𝜑)) |
| 23 | 22 | adantlr 715 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) ∧ 𝑦 = -𝑥) → (𝜒 ↔ 𝜑)) |
| 24 | 12, 23 | rspcedv 3599 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → (𝜑 → ∃𝑦 ∈ ℕ0 𝜒)) |
| 25 | 24 | impancom 451 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (-𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜒)) |
| 26 | 11, 25 | orim12d 966 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → ((𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))) |
| 27 | 3, 26 | mpd 15 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)) |
| 28 | r19.43 3109 | . . . 4 ⊢ (∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒) ↔ (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)) | |
| 29 | 27, 28 | sylibr 234 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
| 30 | 29 | rexlimiva 3134 | . 2 ⊢ (∃𝑥 ∈ ℤ 𝜑 → ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
| 31 | nn0z 12618 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ) | |
| 32 | 6 | rspcev 3606 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑) |
| 33 | 31, 32 | sylan 580 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑) |
| 34 | nn0negz 12635 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ) | |
| 35 | 20 | rspcev 3606 | . . . . 5 ⊢ ((-𝑦 ∈ ℤ ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
| 36 | 34, 35 | sylan 580 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
| 37 | 33, 36 | jaodan 959 | . . 3 ⊢ ((𝑦 ∈ ℕ0 ∧ (𝜓 ∨ 𝜒)) → ∃𝑥 ∈ ℤ 𝜑) |
| 38 | 37 | rexlimiva 3134 | . 2 ⊢ (∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
| 39 | 30, 38 | impbii 209 | 1 ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ℝcr 11133 -cneg 11472 ℕ0cn0 12506 ℤcz 12593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 |
| This theorem is referenced by: dvdsrabdioph 42808 |
| Copyright terms: Public domain | W3C validator |