Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexzrexnn0 | Structured version Visualization version GIF version |
Description: Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
rexzrexnn0.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
rexzrexnn0.2 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexzrexnn0 | ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 12264 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))) | |
2 | 1 | simprbi 496 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)) |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)) |
4 | simpr 484 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
5 | simplr 765 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝜑) | |
6 | rexzrexnn0.1 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | 6 | equcoms 2024 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
8 | 7 | bicomd 222 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
9 | 8 | rspcev 3552 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝜑) → ∃𝑦 ∈ ℕ0 𝜓) |
10 | 4, 5, 9 | syl2anc 583 | . . . . . . 7 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → ∃𝑦 ∈ ℕ0 𝜓) |
11 | 10 | ex 412 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜓)) |
12 | simpr 484 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → -𝑥 ∈ ℕ0) | |
13 | zcn 12254 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
14 | 13 | negnegd 11253 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℤ → --𝑥 = 𝑥) |
15 | 14 | eqcomd 2744 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ ℤ → 𝑥 = --𝑥) |
16 | negeq 11143 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = -𝑥 → -𝑦 = --𝑥) | |
17 | 16 | eqeq2d 2749 | . . . . . . . . . . . . 13 ⊢ (𝑦 = -𝑥 → (𝑥 = -𝑦 ↔ 𝑥 = --𝑥)) |
18 | 15, 17 | syl5ibrcom 246 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℤ → (𝑦 = -𝑥 → 𝑥 = -𝑦)) |
19 | 18 | imp 406 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦) |
20 | rexzrexnn0.2 | . . . . . . . . . . 11 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) | |
21 | 19, 20 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑 ↔ 𝜒)) |
22 | 21 | bicomd 222 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜒 ↔ 𝜑)) |
23 | 22 | adantlr 711 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) ∧ 𝑦 = -𝑥) → (𝜒 ↔ 𝜑)) |
24 | 12, 23 | rspcedv 3544 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → (𝜑 → ∃𝑦 ∈ ℕ0 𝜒)) |
25 | 24 | impancom 451 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (-𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜒)) |
26 | 11, 25 | orim12d 961 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → ((𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))) |
27 | 3, 26 | mpd 15 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)) |
28 | r19.43 3277 | . . . 4 ⊢ (∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒) ↔ (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)) | |
29 | 27, 28 | sylibr 233 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
30 | 29 | rexlimiva 3209 | . 2 ⊢ (∃𝑥 ∈ ℤ 𝜑 → ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
31 | nn0z 12273 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ) | |
32 | 6 | rspcev 3552 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑) |
33 | 31, 32 | sylan 579 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑) |
34 | nn0negz 12288 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ) | |
35 | 20 | rspcev 3552 | . . . . 5 ⊢ ((-𝑦 ∈ ℤ ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
36 | 34, 35 | sylan 579 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
37 | 33, 36 | jaodan 954 | . . 3 ⊢ ((𝑦 ∈ ℕ0 ∧ (𝜓 ∨ 𝜒)) → ∃𝑥 ∈ ℤ 𝜑) |
38 | 37 | rexlimiva 3209 | . 2 ⊢ (∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
39 | 30, 38 | impbii 208 | 1 ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ℝcr 10801 -cneg 11136 ℕ0cn0 12163 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 |
This theorem is referenced by: dvdsrabdioph 40548 |
Copyright terms: Public domain | W3C validator |