Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexzrexnn0 Structured version   Visualization version   GIF version

Theorem rexzrexnn0 42820
Description: Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypotheses
Ref Expression
rexzrexnn0.1 (𝑥 = 𝑦 → (𝜑𝜓))
rexzrexnn0.2 (𝑥 = -𝑦 → (𝜑𝜒))
Assertion
Ref Expression
rexzrexnn0 (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝜒,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)

Proof of Theorem rexzrexnn0
StepHypRef Expression
1 elznn0 12630 . . . . . . 7 (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)))
21simprbi 496 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))
32adantr 480 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))
4 simpr 484 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
5 simplr 768 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝜑)
6 rexzrexnn0.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜓))
76equcoms 2018 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝜑𝜓))
87bicomd 223 . . . . . . . . 9 (𝑦 = 𝑥 → (𝜓𝜑))
98rspcev 3621 . . . . . . . 8 ((𝑥 ∈ ℕ0𝜑) → ∃𝑦 ∈ ℕ0 𝜓)
104, 5, 9syl2anc 584 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → ∃𝑦 ∈ ℕ0 𝜓)
1110ex 412 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜓))
12 simpr 484 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → -𝑥 ∈ ℕ0)
13 zcn 12620 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1413negnegd 11612 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → --𝑥 = 𝑥)
1514eqcomd 2742 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 = --𝑥)
16 negeq 11501 . . . . . . . . . . . . . 14 (𝑦 = -𝑥 → -𝑦 = --𝑥)
1716eqeq2d 2747 . . . . . . . . . . . . 13 (𝑦 = -𝑥 → (𝑥 = -𝑦𝑥 = --𝑥))
1815, 17syl5ibrcom 247 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑦 = -𝑥𝑥 = -𝑦))
1918imp 406 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦)
20 rexzrexnn0.2 . . . . . . . . . . 11 (𝑥 = -𝑦 → (𝜑𝜒))
2119, 20syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑𝜒))
2221bicomd 223 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜒𝜑))
2322adantlr 715 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) ∧ 𝑦 = -𝑥) → (𝜒𝜑))
2412, 23rspcedv 3614 . . . . . . 7 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → (𝜑 → ∃𝑦 ∈ ℕ0 𝜒))
2524impancom 451 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝜑) → (-𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜒))
2611, 25orim12d 966 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝜑) → ((𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)))
273, 26mpd 15 . . . 4 ((𝑥 ∈ ℤ ∧ 𝜑) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))
28 r19.43 3121 . . . 4 (∃𝑦 ∈ ℕ0 (𝜓𝜒) ↔ (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))
2927, 28sylibr 234 . . 3 ((𝑥 ∈ ℤ ∧ 𝜑) → ∃𝑦 ∈ ℕ0 (𝜓𝜒))
3029rexlimiva 3146 . 2 (∃𝑥 ∈ ℤ 𝜑 → ∃𝑦 ∈ ℕ0 (𝜓𝜒))
31 nn0z 12640 . . . . 5 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
326rspcev 3621 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑)
3331, 32sylan 580 . . . 4 ((𝑦 ∈ ℕ0𝜓) → ∃𝑥 ∈ ℤ 𝜑)
34 nn0negz 12657 . . . . 5 (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ)
3520rspcev 3621 . . . . 5 ((-𝑦 ∈ ℤ ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3634, 35sylan 580 . . . 4 ((𝑦 ∈ ℕ0𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3733, 36jaodan 959 . . 3 ((𝑦 ∈ ℕ0 ∧ (𝜓𝜒)) → ∃𝑥 ∈ ℤ 𝜑)
3837rexlimiva 3146 . 2 (∃𝑦 ∈ ℕ0 (𝜓𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3930, 38impbii 209 1 (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wrex 3069  cr 11155  -cneg 11494  0cn0 12528  cz 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616
This theorem is referenced by:  dvdsrabdioph  42826
  Copyright terms: Public domain W3C validator