![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexzrexnn0 | Structured version Visualization version GIF version |
Description: Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
rexzrexnn0.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
rexzrexnn0.2 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexzrexnn0 | ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 12654 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))) | |
2 | 1 | simprbi 496 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)) |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)) |
4 | simpr 484 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
5 | simplr 768 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝜑) | |
6 | rexzrexnn0.1 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | 6 | equcoms 2019 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
8 | 7 | bicomd 223 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
9 | 8 | rspcev 3635 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝜑) → ∃𝑦 ∈ ℕ0 𝜓) |
10 | 4, 5, 9 | syl2anc 583 | . . . . . . 7 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → ∃𝑦 ∈ ℕ0 𝜓) |
11 | 10 | ex 412 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜓)) |
12 | simpr 484 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → -𝑥 ∈ ℕ0) | |
13 | zcn 12644 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
14 | 13 | negnegd 11638 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℤ → --𝑥 = 𝑥) |
15 | 14 | eqcomd 2746 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ ℤ → 𝑥 = --𝑥) |
16 | negeq 11528 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = -𝑥 → -𝑦 = --𝑥) | |
17 | 16 | eqeq2d 2751 | . . . . . . . . . . . . 13 ⊢ (𝑦 = -𝑥 → (𝑥 = -𝑦 ↔ 𝑥 = --𝑥)) |
18 | 15, 17 | syl5ibrcom 247 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℤ → (𝑦 = -𝑥 → 𝑥 = -𝑦)) |
19 | 18 | imp 406 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦) |
20 | rexzrexnn0.2 | . . . . . . . . . . 11 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) | |
21 | 19, 20 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑 ↔ 𝜒)) |
22 | 21 | bicomd 223 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜒 ↔ 𝜑)) |
23 | 22 | adantlr 714 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) ∧ 𝑦 = -𝑥) → (𝜒 ↔ 𝜑)) |
24 | 12, 23 | rspcedv 3628 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → (𝜑 → ∃𝑦 ∈ ℕ0 𝜒)) |
25 | 24 | impancom 451 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (-𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜒)) |
26 | 11, 25 | orim12d 965 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → ((𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))) |
27 | 3, 26 | mpd 15 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)) |
28 | r19.43 3128 | . . . 4 ⊢ (∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒) ↔ (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)) | |
29 | 27, 28 | sylibr 234 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
30 | 29 | rexlimiva 3153 | . 2 ⊢ (∃𝑥 ∈ ℤ 𝜑 → ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
31 | nn0z 12664 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ) | |
32 | 6 | rspcev 3635 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑) |
33 | 31, 32 | sylan 579 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑) |
34 | nn0negz 12681 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ) | |
35 | 20 | rspcev 3635 | . . . . 5 ⊢ ((-𝑦 ∈ ℤ ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
36 | 34, 35 | sylan 579 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
37 | 33, 36 | jaodan 958 | . . 3 ⊢ ((𝑦 ∈ ℕ0 ∧ (𝜓 ∨ 𝜒)) → ∃𝑥 ∈ ℤ 𝜑) |
38 | 37 | rexlimiva 3153 | . 2 ⊢ (∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
39 | 30, 38 | impbii 209 | 1 ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ℝcr 11183 -cneg 11521 ℕ0cn0 12553 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 |
This theorem is referenced by: dvdsrabdioph 42766 |
Copyright terms: Public domain | W3C validator |