Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexzrexnn0 Structured version   Visualization version   GIF version

Theorem rexzrexnn0 39538
Description: Rewrite a quantification over integers into a quantification over naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypotheses
Ref Expression
rexzrexnn0.1 (𝑥 = 𝑦 → (𝜑𝜓))
rexzrexnn0.2 (𝑥 = -𝑦 → (𝜑𝜒))
Assertion
Ref Expression
rexzrexnn0 (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝜒,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)

Proof of Theorem rexzrexnn0
StepHypRef Expression
1 elznn0 11975 . . . . . . 7 (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)))
21simprbi 499 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))
32adantr 483 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))
4 simpr 487 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
5 simplr 767 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝜑)
6 rexzrexnn0.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜓))
76equcoms 2027 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝜑𝜓))
87bicomd 225 . . . . . . . . 9 (𝑦 = 𝑥 → (𝜓𝜑))
98rspcev 3602 . . . . . . . 8 ((𝑥 ∈ ℕ0𝜑) → ∃𝑦 ∈ ℕ0 𝜓)
104, 5, 9syl2anc 586 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → ∃𝑦 ∈ ℕ0 𝜓)
1110ex 415 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜓))
12 simpr 487 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → -𝑥 ∈ ℕ0)
13 zcn 11965 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1413negnegd 10966 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → --𝑥 = 𝑥)
1514eqcomd 2826 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 = --𝑥)
16 negeq 10856 . . . . . . . . . . . . . 14 (𝑦 = -𝑥 → -𝑦 = --𝑥)
1716eqeq2d 2831 . . . . . . . . . . . . 13 (𝑦 = -𝑥 → (𝑥 = -𝑦𝑥 = --𝑥))
1815, 17syl5ibrcom 249 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑦 = -𝑥𝑥 = -𝑦))
1918imp 409 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦)
20 rexzrexnn0.2 . . . . . . . . . . 11 (𝑥 = -𝑦 → (𝜑𝜒))
2119, 20syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑𝜒))
2221bicomd 225 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜒𝜑))
2322adantlr 713 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) ∧ 𝑦 = -𝑥) → (𝜒𝜑))
2412, 23rspcedv 3595 . . . . . . 7 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → (𝜑 → ∃𝑦 ∈ ℕ0 𝜒))
2524impancom 454 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝜑) → (-𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜒))
2611, 25orim12d 961 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝜑) → ((𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)))
273, 26mpd 15 . . . 4 ((𝑥 ∈ ℤ ∧ 𝜑) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))
28 r19.43 3338 . . . 4 (∃𝑦 ∈ ℕ0 (𝜓𝜒) ↔ (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))
2927, 28sylibr 236 . . 3 ((𝑥 ∈ ℤ ∧ 𝜑) → ∃𝑦 ∈ ℕ0 (𝜓𝜒))
3029rexlimiva 3268 . 2 (∃𝑥 ∈ ℤ 𝜑 → ∃𝑦 ∈ ℕ0 (𝜓𝜒))
31 nn0z 11984 . . . . 5 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
326rspcev 3602 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑)
3331, 32sylan 582 . . . 4 ((𝑦 ∈ ℕ0𝜓) → ∃𝑥 ∈ ℤ 𝜑)
34 nn0negz 11999 . . . . 5 (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ)
3520rspcev 3602 . . . . 5 ((-𝑦 ∈ ℤ ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3634, 35sylan 582 . . . 4 ((𝑦 ∈ ℕ0𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3733, 36jaodan 954 . . 3 ((𝑦 ∈ ℕ0 ∧ (𝜓𝜒)) → ∃𝑥 ∈ ℤ 𝜑)
3837rexlimiva 3268 . 2 (∃𝑦 ∈ ℕ0 (𝜓𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3930, 38impbii 211 1 (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wrex 3126  cr 10514  -cneg 10849  0cn0 11876  cz 11960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-ltxr 10658  df-sub 10850  df-neg 10851  df-nn 11617  df-n0 11877  df-z 11961
This theorem is referenced by:  dvdsrabdioph  39544
  Copyright terms: Public domain W3C validator