Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexzrexnn0 Structured version   Visualization version   GIF version

Theorem rexzrexnn0 42802
Description: Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypotheses
Ref Expression
rexzrexnn0.1 (𝑥 = 𝑦 → (𝜑𝜓))
rexzrexnn0.2 (𝑥 = -𝑦 → (𝜑𝜒))
Assertion
Ref Expression
rexzrexnn0 (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝜒,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)

Proof of Theorem rexzrexnn0
StepHypRef Expression
1 elznn0 12608 . . . . . . 7 (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)))
21simprbi 496 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))
32adantr 480 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))
4 simpr 484 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
5 simplr 768 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝜑)
6 rexzrexnn0.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜓))
76equcoms 2020 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝜑𝜓))
87bicomd 223 . . . . . . . . 9 (𝑦 = 𝑥 → (𝜓𝜑))
98rspcev 3606 . . . . . . . 8 ((𝑥 ∈ ℕ0𝜑) → ∃𝑦 ∈ ℕ0 𝜓)
104, 5, 9syl2anc 584 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → ∃𝑦 ∈ ℕ0 𝜓)
1110ex 412 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜓))
12 simpr 484 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → -𝑥 ∈ ℕ0)
13 zcn 12598 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1413negnegd 11590 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → --𝑥 = 𝑥)
1514eqcomd 2742 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 = --𝑥)
16 negeq 11479 . . . . . . . . . . . . . 14 (𝑦 = -𝑥 → -𝑦 = --𝑥)
1716eqeq2d 2747 . . . . . . . . . . . . 13 (𝑦 = -𝑥 → (𝑥 = -𝑦𝑥 = --𝑥))
1815, 17syl5ibrcom 247 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑦 = -𝑥𝑥 = -𝑦))
1918imp 406 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦)
20 rexzrexnn0.2 . . . . . . . . . . 11 (𝑥 = -𝑦 → (𝜑𝜒))
2119, 20syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑𝜒))
2221bicomd 223 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜒𝜑))
2322adantlr 715 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) ∧ 𝑦 = -𝑥) → (𝜒𝜑))
2412, 23rspcedv 3599 . . . . . . 7 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → (𝜑 → ∃𝑦 ∈ ℕ0 𝜒))
2524impancom 451 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝜑) → (-𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜒))
2611, 25orim12d 966 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝜑) → ((𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)))
273, 26mpd 15 . . . 4 ((𝑥 ∈ ℤ ∧ 𝜑) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))
28 r19.43 3109 . . . 4 (∃𝑦 ∈ ℕ0 (𝜓𝜒) ↔ (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))
2927, 28sylibr 234 . . 3 ((𝑥 ∈ ℤ ∧ 𝜑) → ∃𝑦 ∈ ℕ0 (𝜓𝜒))
3029rexlimiva 3134 . 2 (∃𝑥 ∈ ℤ 𝜑 → ∃𝑦 ∈ ℕ0 (𝜓𝜒))
31 nn0z 12618 . . . . 5 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
326rspcev 3606 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑)
3331, 32sylan 580 . . . 4 ((𝑦 ∈ ℕ0𝜓) → ∃𝑥 ∈ ℤ 𝜑)
34 nn0negz 12635 . . . . 5 (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ)
3520rspcev 3606 . . . . 5 ((-𝑦 ∈ ℤ ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3634, 35sylan 580 . . . 4 ((𝑦 ∈ ℕ0𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3733, 36jaodan 959 . . 3 ((𝑦 ∈ ℕ0 ∧ (𝜓𝜒)) → ∃𝑥 ∈ ℤ 𝜑)
3837rexlimiva 3134 . 2 (∃𝑦 ∈ ℕ0 (𝜓𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3930, 38impbii 209 1 (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3061  cr 11133  -cneg 11472  0cn0 12506  cz 12593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594
This theorem is referenced by:  dvdsrabdioph  42808
  Copyright terms: Public domain W3C validator