Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexzrexnn0 Structured version   Visualization version   GIF version

Theorem rexzrexnn0 38207
Description: Rewrite a quantification over integers into a quantification over naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypotheses
Ref Expression
rexzrexnn0.1 (𝑥 = 𝑦 → (𝜑𝜓))
rexzrexnn0.2 (𝑥 = -𝑦 → (𝜑𝜒))
Assertion
Ref Expression
rexzrexnn0 (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝜒,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)

Proof of Theorem rexzrexnn0
StepHypRef Expression
1 elznn0 11726 . . . . . . 7 (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)))
21simprbi 492 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))
32adantr 474 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))
4 simpr 479 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
5 simplr 785 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝜑)
6 rexzrexnn0.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜓))
76equcoms 2124 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝜑𝜓))
87bicomd 215 . . . . . . . . 9 (𝑦 = 𝑥 → (𝜓𝜑))
98rspcev 3526 . . . . . . . 8 ((𝑥 ∈ ℕ0𝜑) → ∃𝑦 ∈ ℕ0 𝜓)
104, 5, 9syl2anc 579 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → ∃𝑦 ∈ ℕ0 𝜓)
1110ex 403 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜓))
12 simpr 479 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → -𝑥 ∈ ℕ0)
13 zcn 11716 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1413negnegd 10711 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → --𝑥 = 𝑥)
1514eqcomd 2831 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 = --𝑥)
16 negeq 10600 . . . . . . . . . . . . . 14 (𝑦 = -𝑥 → -𝑦 = --𝑥)
1716eqeq2d 2835 . . . . . . . . . . . . 13 (𝑦 = -𝑥 → (𝑥 = -𝑦𝑥 = --𝑥))
1815, 17syl5ibrcom 239 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑦 = -𝑥𝑥 = -𝑦))
1918imp 397 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦)
20 rexzrexnn0.2 . . . . . . . . . . 11 (𝑥 = -𝑦 → (𝜑𝜒))
2119, 20syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑𝜒))
2221bicomd 215 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜒𝜑))
2322adantlr 706 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) ∧ 𝑦 = -𝑥) → (𝜒𝜑))
2412, 23rspcedv 3530 . . . . . . 7 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → (𝜑 → ∃𝑦 ∈ ℕ0 𝜒))
2524impancom 445 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝜑) → (-𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜒))
2611, 25orim12d 992 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝜑) → ((𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)))
273, 26mpd 15 . . . 4 ((𝑥 ∈ ℤ ∧ 𝜑) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))
28 r19.43 3303 . . . 4 (∃𝑦 ∈ ℕ0 (𝜓𝜒) ↔ (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))
2927, 28sylibr 226 . . 3 ((𝑥 ∈ ℤ ∧ 𝜑) → ∃𝑦 ∈ ℕ0 (𝜓𝜒))
3029rexlimiva 3237 . 2 (∃𝑥 ∈ ℤ 𝜑 → ∃𝑦 ∈ ℕ0 (𝜓𝜒))
31 nn0z 11735 . . . . 5 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
326rspcev 3526 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑)
3331, 32sylan 575 . . . 4 ((𝑦 ∈ ℕ0𝜓) → ∃𝑥 ∈ ℤ 𝜑)
34 nn0negz 11750 . . . . 5 (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ)
3520rspcev 3526 . . . . 5 ((-𝑦 ∈ ℤ ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3634, 35sylan 575 . . . 4 ((𝑦 ∈ ℕ0𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3733, 36jaodan 985 . . 3 ((𝑦 ∈ ℕ0 ∧ (𝜓𝜒)) → ∃𝑥 ∈ ℤ 𝜑)
3837rexlimiva 3237 . 2 (∃𝑦 ∈ ℕ0 (𝜓𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3930, 38impbii 201 1 (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 878   = wceq 1656  wcel 2164  wrex 3118  cr 10258  -cneg 10593  0cn0 11625  cz 11711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-ltxr 10403  df-sub 10594  df-neg 10595  df-nn 11358  df-n0 11626  df-z 11712
This theorem is referenced by:  dvdsrabdioph  38213
  Copyright terms: Public domain W3C validator