MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtrid Structured version   Visualization version   GIF version

Theorem legtrid 28617
Description: Trichotomy law for the less-than relationship. Proposition 5.10 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legtrid (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))

Proof of Theorem legtrid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . 5 𝑃 = (Base‘𝐺)
2 legval.d . . . . 5 = (dist‘𝐺)
3 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 legval.l . . . . 5 = (≤G‘𝐺)
5 legval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
7 legid.a . . . . . 6 (𝜑𝐴𝑃)
87adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴𝑃)
9 legid.b . . . . . 6 (𝜑𝐵𝑃)
109adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
111, 2, 3, 4, 6, 8, 10legid 28613 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) (𝐴 𝐵))
12 legtrd.c . . . . . 6 (𝜑𝐶𝑃)
1312adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶𝑃)
14 simpr 484 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
15 legtrd.d . . . . . 6 (𝜑𝐷𝑃)
1615adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
171, 2, 3, 6, 8, 10, 13, 14, 16tgldim0cgr 28531 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) = (𝐶 𝐷))
1811, 17breqtrd 5192 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) (𝐶 𝐷))
1918orcd 872 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
205ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐺 ∈ TarskiG)
21 simplr 768 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝑥𝑃)
2221adantr 480 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑥𝑃)
237ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴𝑃)
249ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐵𝑃)
25 simprl 770 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑦𝑃)
26 simplrr 777 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴𝑥)
2726necomd 3002 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑥𝐴)
28 simplrl 776 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝐵𝐼𝑥))
291, 2, 3, 20, 24, 23, 22, 28tgbtwncom 28514 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝑥𝐼𝐵))
30 simprrl 780 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝑥𝐼𝑦))
311, 3, 20, 22, 23, 24, 25, 27, 29, 30tgbtwnconn2 28602 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → (𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)))
32 simprrr 781 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → (𝐴 𝑦) = (𝐶 𝐷))
3331, 32jca 511 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
345ad2antrr 725 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐺 ∈ TarskiG)
357ad2antrr 725 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐴𝑃)
3612ad2antrr 725 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐶𝑃)
3715ad2antrr 725 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐷𝑃)
381, 2, 3, 34, 21, 35, 36, 37axtgsegcon 28490 . . . . . . 7 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
3933, 38reximddv 3177 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
4039adantllr 718 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
415adantr 480 . . . . . 6 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG)
429adantr 480 . . . . . 6 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐵𝑃)
437adantr 480 . . . . . 6 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐴𝑃)
44 simpr 484 . . . . . 6 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
451, 2, 3, 41, 42, 43, 44tgbtwndiff 28532 . . . . 5 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑥𝑃 (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥))
4640, 45r19.29a 3168 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
47 andir 1009 . . . . . . 7 (((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷))))
48 eqcom 2747 . . . . . . . . 9 ((𝐴 𝑦) = (𝐶 𝐷) ↔ (𝐶 𝐷) = (𝐴 𝑦))
4948anbi2i 622 . . . . . . . 8 ((𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))
5049orbi2i 911 . . . . . . 7 (((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷))) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5147, 50bitri 275 . . . . . 6 (((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5251rexbii 3100 . . . . 5 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
53 r19.43 3128 . . . . 5 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5452, 53bitri 275 . . . 4 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5546, 54sylib 218 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
561, 2, 3, 4, 5, 7, 9, 12, 15legov2 28612 . . . . 5 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷))))
571, 2, 3, 4, 5, 12, 15, 7, 9legov 28611 . . . . 5 (𝜑 → ((𝐶 𝐷) (𝐴 𝐵) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5856, 57orbi12d 917 . . . 4 (𝜑 → (((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))))
5958adantr 480 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))))
6055, 59mpbird 257 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
611, 7tgldimor 28528 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
6219, 60, 61mpjaodan 959 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  1c1 11185  cle 11325  2c2 12348  chash 14379  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  ≤Gcleg 28608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537  df-leg 28609
This theorem is referenced by:  legso  28625  krippen  28717  midex  28763  opphllem5  28777  opphllem6  28778
  Copyright terms: Public domain W3C validator