MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtrid Structured version   Visualization version   GIF version

Theorem legtrid 27707
Description: Trichotomy law for the less-than relationship. Proposition 5.10 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legtrid (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))

Proof of Theorem legtrid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . 5 𝑃 = (Base‘𝐺)
2 legval.d . . . . 5 = (dist‘𝐺)
3 legval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 legval.l . . . . 5 = (≤G‘𝐺)
5 legval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65adantr 481 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
7 legid.a . . . . . 6 (𝜑𝐴𝑃)
87adantr 481 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴𝑃)
9 legid.b . . . . . 6 (𝜑𝐵𝑃)
109adantr 481 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
111, 2, 3, 4, 6, 8, 10legid 27703 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) (𝐴 𝐵))
12 legtrd.c . . . . . 6 (𝜑𝐶𝑃)
1312adantr 481 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶𝑃)
14 simpr 485 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
15 legtrd.d . . . . . 6 (𝜑𝐷𝑃)
1615adantr 481 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
171, 2, 3, 6, 8, 10, 13, 14, 16tgldim0cgr 27621 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) = (𝐶 𝐷))
1811, 17breqtrd 5167 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) (𝐶 𝐷))
1918orcd 871 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
205ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐺 ∈ TarskiG)
21 simplr 767 . . . . . . . . . 10 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝑥𝑃)
2221adantr 481 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑥𝑃)
237ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴𝑃)
249ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐵𝑃)
25 simprl 769 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑦𝑃)
26 simplrr 776 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴𝑥)
2726necomd 2995 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝑥𝐴)
28 simplrl 775 . . . . . . . . . 10 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝐵𝐼𝑥))
291, 2, 3, 20, 24, 23, 22, 28tgbtwncom 27604 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝑥𝐼𝐵))
30 simprrl 779 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → 𝐴 ∈ (𝑥𝐼𝑦))
311, 3, 20, 22, 23, 24, 25, 27, 29, 30tgbtwnconn2 27692 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → (𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)))
32 simprrr 780 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → (𝐴 𝑦) = (𝐶 𝐷))
3331, 32jca 512 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) ∧ (𝑦𝑃 ∧ (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))) → ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
345ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐺 ∈ TarskiG)
357ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐴𝑃)
3612ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐶𝑃)
3715ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → 𝐷𝑃)
381, 2, 3, 34, 21, 35, 36, 37axtgsegcon 27580 . . . . . . 7 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 (𝐴 ∈ (𝑥𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
3933, 38reximddv 3170 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
4039adantllr 717 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
415adantr 481 . . . . . 6 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG)
429adantr 481 . . . . . 6 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐵𝑃)
437adantr 481 . . . . . 6 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐴𝑃)
44 simpr 485 . . . . . 6 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
451, 2, 3, 41, 42, 43, 44tgbtwndiff 27622 . . . . 5 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑥𝑃 (𝐴 ∈ (𝐵𝐼𝑥) ∧ 𝐴𝑥))
4640, 45r19.29a 3161 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)))
47 andir 1007 . . . . . . 7 (((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷))))
48 eqcom 2738 . . . . . . . . 9 ((𝐴 𝑦) = (𝐶 𝐷) ↔ (𝐶 𝐷) = (𝐴 𝑦))
4948anbi2i 623 . . . . . . . 8 ((𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))
5049orbi2i 911 . . . . . . 7 (((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐴 𝑦) = (𝐶 𝐷))) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5147, 50bitri 274 . . . . . 6 (((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5251rexbii 3093 . . . . 5 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ ∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
53 r19.43 3121 . . . . 5 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5452, 53bitri 274 . . . 4 (∃𝑦𝑃 ((𝐵 ∈ (𝐴𝐼𝑦) ∨ 𝑦 ∈ (𝐴𝐼𝐵)) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5546, 54sylib 217 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
561, 2, 3, 4, 5, 7, 9, 12, 15legov2 27702 . . . . 5 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷))))
571, 2, 3, 4, 5, 12, 15, 7, 9legov 27701 . . . . 5 (𝜑 → ((𝐶 𝐷) (𝐴 𝐵) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦))))
5856, 57orbi12d 917 . . . 4 (𝜑 → (((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))))
5958adantr 481 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → (((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)) ↔ (∃𝑦𝑃 (𝐵 ∈ (𝐴𝐼𝑦) ∧ (𝐴 𝑦) = (𝐶 𝐷)) ∨ ∃𝑦𝑃 (𝑦 ∈ (𝐴𝐼𝐵) ∧ (𝐶 𝐷) = (𝐴 𝑦)))))
6055, 59mpbird 256 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
611, 7tgldimor 27618 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
6219, 60, 61mpjaodan 957 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2939  wrex 3069   class class class wbr 5141  cfv 6532  (class class class)co 7393  1c1 11093  cle 11231  2c2 12249  chash 14272  Basecbs 17126  distcds 17188  TarskiGcstrkg 27543  Itvcitv 27549  ≤Gcleg 27698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-oadd 8452  df-er 8686  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-dju 9878  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-xnn0 12527  df-z 12541  df-uz 12805  df-fz 13467  df-fzo 13610  df-hash 14273  df-word 14447  df-concat 14503  df-s1 14528  df-s2 14781  df-s3 14782  df-trkgc 27564  df-trkgb 27565  df-trkgcb 27566  df-trkg 27569  df-cgrg 27627  df-leg 27699
This theorem is referenced by:  legso  27715  krippen  27807  midex  27853  opphllem5  27867  opphllem6  27868
  Copyright terms: Public domain W3C validator