Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem11 Structured version   Visualization version   GIF version

Theorem erdszelem11 35207
Description: Lemma for erdsze 35208. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.i 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.j 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.t 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
erdszelem.r (𝜑𝑅 ∈ ℕ)
erdszelem.s (𝜑𝑆 ∈ ℕ)
erdszelem.m (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdszelem11 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝑥,𝑦   𝑛,𝑠,𝑥,𝑦,𝐹   𝑛,𝐼,𝑠,𝑥,𝑦   𝑛,𝐽,𝑠,𝑥,𝑦   𝑅,𝑠,𝑥,𝑦   𝑛,𝑁,𝑠,𝑥,𝑦   𝜑,𝑛,𝑠,𝑥,𝑦   𝑆,𝑠,𝑥,𝑦   𝑇,𝑠
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem erdszelem11
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 erdsze.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 erdsze.f . . . 4 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
3 erdszelem.i . . . 4 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
4 erdszelem.j . . . 4 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
5 erdszelem.t . . . 4 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
6 erdszelem.r . . . 4 (𝜑𝑅 ∈ ℕ)
7 erdszelem.s . . . 4 (𝜑𝑆 ∈ ℕ)
8 erdszelem.m . . . 4 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
91, 2, 3, 4, 5, 6, 7, 8erdszelem10 35206 . . 3 (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
101adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑁 ∈ ℕ)
112adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ)
12 ltso 11342 . . . . . . 7 < Or ℝ
13 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑚 ∈ (1...𝑁))
146adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑅 ∈ ℕ)
15 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))
1610, 11, 3, 12, 13, 14, 15erdszelem7 35203 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))
1716expr 456 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
181adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑁 ∈ ℕ)
192adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ)
20 gtso 11343 . . . . . . 7 < Or ℝ
21 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑚 ∈ (1...𝑁))
227adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑆 ∈ ℕ)
23 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))
2418, 19, 4, 20, 21, 22, 23erdszelem7 35203 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))
2524expr 456 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
2617, 25orim12d 966 . . . 4 ((𝜑𝑚 ∈ (1...𝑁)) → ((¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
2726rexlimdva 3154 . . 3 (𝜑 → (∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
289, 27mpd 15 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
29 r19.43 3121 . 2 (∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))) ↔ (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
3028, 29sylibr 234 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wrex 3069  {crab 3435  𝒫 cpw 4599  cop 4631   class class class wbr 5142  cmpt 5224  ccnv 5683  cres 5686  cima 5687  1-1wf1 6557  cfv 6560   Isom wiso 6561  (class class class)co 7432  supcsup 9481  cr 11155  1c1 11157   · cmul 11161   < clt 11296  cle 11297  cmin 11493  cn 12267  ...cfz 13548  chash 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-fz 13549  df-hash 14371
This theorem is referenced by:  erdsze  35208
  Copyright terms: Public domain W3C validator