Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem11 Structured version   Visualization version   GIF version

Theorem erdszelem11 33163
Description: Lemma for erdsze 33164. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.i 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.j 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.t 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
erdszelem.r (𝜑𝑅 ∈ ℕ)
erdszelem.s (𝜑𝑆 ∈ ℕ)
erdszelem.m (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdszelem11 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝑥,𝑦   𝑛,𝑠,𝑥,𝑦,𝐹   𝑛,𝐼,𝑠,𝑥,𝑦   𝑛,𝐽,𝑠,𝑥,𝑦   𝑅,𝑠,𝑥,𝑦   𝑛,𝑁,𝑠,𝑥,𝑦   𝜑,𝑛,𝑠,𝑥,𝑦   𝑆,𝑠,𝑥,𝑦   𝑇,𝑠
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem erdszelem11
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 erdsze.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 erdsze.f . . . 4 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
3 erdszelem.i . . . 4 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
4 erdszelem.j . . . 4 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
5 erdszelem.t . . . 4 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
6 erdszelem.r . . . 4 (𝜑𝑅 ∈ ℕ)
7 erdszelem.s . . . 4 (𝜑𝑆 ∈ ℕ)
8 erdszelem.m . . . 4 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
91, 2, 3, 4, 5, 6, 7, 8erdszelem10 33162 . . 3 (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
101adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑁 ∈ ℕ)
112adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ)
12 ltso 11055 . . . . . . 7 < Or ℝ
13 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑚 ∈ (1...𝑁))
146adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑅 ∈ ℕ)
15 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))
1610, 11, 3, 12, 13, 14, 15erdszelem7 33159 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))
1716expr 457 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
181adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑁 ∈ ℕ)
192adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ)
20 gtso 11056 . . . . . . 7 < Or ℝ
21 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑚 ∈ (1...𝑁))
227adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑆 ∈ ℕ)
23 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))
2418, 19, 4, 20, 21, 22, 23erdszelem7 33159 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))
2524expr 457 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
2617, 25orim12d 962 . . . 4 ((𝜑𝑚 ∈ (1...𝑁)) → ((¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
2726rexlimdva 3213 . . 3 (𝜑 → (∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
289, 27mpd 15 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
29 r19.43 3280 . 2 (∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))) ↔ (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
3028, 29sylibr 233 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  𝒫 cpw 4533  cop 4567   class class class wbr 5074  cmpt 5157  ccnv 5588  cres 5591  cima 5592  1-1wf1 6430  cfv 6433   Isom wiso 6434  (class class class)co 7275  supcsup 9199  cr 10870  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cn 11973  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  erdsze  33164
  Copyright terms: Public domain W3C validator