| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for erdsze 35246. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| Ref | Expression |
|---|---|
| erdsze.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| erdsze.f | ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
| erdszelem.i | ⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| erdszelem.j | ⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| erdszelem.t | ⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) |
| erdszelem.r | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| erdszelem.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
| erdszelem.m | ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) |
| Ref | Expression |
|---|---|
| erdszelem11 | ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erdsze.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | erdsze.f | . . . 4 ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) | |
| 3 | erdszelem.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | |
| 4 | erdszelem.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | |
| 5 | erdszelem.t | . . . 4 ⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) | |
| 6 | erdszelem.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 7 | erdszelem.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
| 8 | erdszelem.m | . . . 4 ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | erdszelem10 35244 | . . 3 ⊢ (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) |
| 10 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → 𝑁 ∈ ℕ) |
| 11 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ) |
| 12 | ltso 11193 | . . . . . . 7 ⊢ < Or ℝ | |
| 13 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → 𝑚 ∈ (1...𝑁)) | |
| 14 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → 𝑅 ∈ ℕ) |
| 15 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1))) | |
| 16 | 10, 11, 3, 12, 13, 14, 15 | erdszelem7 35241 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠)))) |
| 17 | 16 | expr 456 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))))) |
| 18 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → 𝑁 ∈ ℕ) |
| 19 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ) |
| 20 | gtso 11194 | . . . . . . 7 ⊢ ◡ < Or ℝ | |
| 21 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → 𝑚 ∈ (1...𝑁)) | |
| 22 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → 𝑆 ∈ ℕ) |
| 23 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))) | |
| 24 | 18, 19, 4, 20, 21, 22, 23 | erdszelem7 35241 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))) |
| 25 | 24 | expr 456 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| 26 | 17, 25 | orim12d 966 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ((¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))))) |
| 27 | 26 | rexlimdva 3133 | . . 3 ⊢ (𝜑 → (∃𝑚 ∈ (1...𝑁)(¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))))) |
| 28 | 9, 27 | mpd 15 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| 29 | r19.43 3100 | . 2 ⊢ (∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))) ↔ (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) | |
| 30 | 28, 29 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 𝒫 cpw 4547 〈cop 4579 class class class wbr 5089 ↦ cmpt 5170 ◡ccnv 5613 ↾ cres 5616 “ cima 5617 –1-1→wf1 6478 ‘cfv 6481 Isom wiso 6482 (class class class)co 7346 supcsup 9324 ℝcr 11005 1c1 11007 · cmul 11011 < clt 11146 ≤ cle 11147 − cmin 11344 ℕcn 12125 ...cfz 13407 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: erdsze 35246 |
| Copyright terms: Public domain | W3C validator |