Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem11 Structured version   Visualization version   GIF version

Theorem erdszelem11 32848
Description: Lemma for erdsze 32849. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.i 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.j 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.t 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
erdszelem.r (𝜑𝑅 ∈ ℕ)
erdszelem.s (𝜑𝑆 ∈ ℕ)
erdszelem.m (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdszelem11 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝑥,𝑦   𝑛,𝑠,𝑥,𝑦,𝐹   𝑛,𝐼,𝑠,𝑥,𝑦   𝑛,𝐽,𝑠,𝑥,𝑦   𝑅,𝑠,𝑥,𝑦   𝑛,𝑁,𝑠,𝑥,𝑦   𝜑,𝑛,𝑠,𝑥,𝑦   𝑆,𝑠,𝑥,𝑦   𝑇,𝑠
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem erdszelem11
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 erdsze.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 erdsze.f . . . 4 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
3 erdszelem.i . . . 4 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
4 erdszelem.j . . . 4 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
5 erdszelem.t . . . 4 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
6 erdszelem.r . . . 4 (𝜑𝑅 ∈ ℕ)
7 erdszelem.s . . . 4 (𝜑𝑆 ∈ ℕ)
8 erdszelem.m . . . 4 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
91, 2, 3, 4, 5, 6, 7, 8erdszelem10 32847 . . 3 (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
101adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑁 ∈ ℕ)
112adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ)
12 ltso 10896 . . . . . . 7 < Or ℝ
13 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑚 ∈ (1...𝑁))
146adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑅 ∈ ℕ)
15 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))
1610, 11, 3, 12, 13, 14, 15erdszelem7 32844 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))
1716expr 460 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
181adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑁 ∈ ℕ)
192adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ)
20 gtso 10897 . . . . . . 7 < Or ℝ
21 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑚 ∈ (1...𝑁))
227adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑆 ∈ ℕ)
23 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))
2418, 19, 4, 20, 21, 22, 23erdszelem7 32844 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))
2524expr 460 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
2617, 25orim12d 965 . . . 4 ((𝜑𝑚 ∈ (1...𝑁)) → ((¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
2726rexlimdva 3196 . . 3 (𝜑 → (∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
289, 27mpd 15 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
29 r19.43 3257 . 2 (∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))) ↔ (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
3028, 29sylibr 237 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  wrex 3055  {crab 3058  𝒫 cpw 4503  cop 4537   class class class wbr 5043  cmpt 5124  ccnv 5539  cres 5542  cima 5543  1-1wf1 6366  cfv 6369   Isom wiso 6370  (class class class)co 7202  supcsup 9045  cr 10711  1c1 10713   · cmul 10717   < clt 10850  cle 10851  cmin 11045  cn 11813  ...cfz 13078  chash 13879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-hash 13880
This theorem is referenced by:  erdsze  32849
  Copyright terms: Public domain W3C validator