Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem11 Structured version   Visualization version   GIF version

Theorem erdszelem11 33795
Description: Lemma for erdsze 33796. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.i 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.j 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.t 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
erdszelem.r (𝜑𝑅 ∈ ℕ)
erdszelem.s (𝜑𝑆 ∈ ℕ)
erdszelem.m (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdszelem11 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝑥,𝑦   𝑛,𝑠,𝑥,𝑦,𝐹   𝑛,𝐼,𝑠,𝑥,𝑦   𝑛,𝐽,𝑠,𝑥,𝑦   𝑅,𝑠,𝑥,𝑦   𝑛,𝑁,𝑠,𝑥,𝑦   𝜑,𝑛,𝑠,𝑥,𝑦   𝑆,𝑠,𝑥,𝑦   𝑇,𝑠
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem erdszelem11
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 erdsze.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 erdsze.f . . . 4 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
3 erdszelem.i . . . 4 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
4 erdszelem.j . . . 4 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
5 erdszelem.t . . . 4 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
6 erdszelem.r . . . 4 (𝜑𝑅 ∈ ℕ)
7 erdszelem.s . . . 4 (𝜑𝑆 ∈ ℕ)
8 erdszelem.m . . . 4 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
91, 2, 3, 4, 5, 6, 7, 8erdszelem10 33794 . . 3 (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
101adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑁 ∈ ℕ)
112adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ)
12 ltso 11235 . . . . . . 7 < Or ℝ
13 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑚 ∈ (1...𝑁))
146adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → 𝑅 ∈ ℕ)
15 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))
1610, 11, 3, 12, 13, 14, 15erdszelem7 33791 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))
1716expr 457 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
181adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑁 ∈ ℕ)
192adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ)
20 gtso 11236 . . . . . . 7 < Or ℝ
21 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑚 ∈ (1...𝑁))
227adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → 𝑆 ∈ ℕ)
23 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))
2418, 19, 4, 20, 21, 22, 23erdszelem7 33791 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))
2524expr 457 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
2617, 25orim12d 963 . . . 4 ((𝜑𝑚 ∈ (1...𝑁)) → ((¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
2726rexlimdva 3152 . . 3 (𝜑 → (∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
289, 27mpd 15 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
29 r19.43 3125 . 2 (∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))) ↔ (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
3028, 29sylibr 233 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  𝒫 cpw 4560  cop 4592   class class class wbr 5105  cmpt 5188  ccnv 5632  cres 5635  cima 5636  1-1wf1 6493  cfv 6496   Isom wiso 6497  (class class class)co 7357  supcsup 9376  cr 11050  1c1 11052   · cmul 11056   < clt 11189  cle 11190  cmin 11385  cn 12153  ...cfz 13424  chash 14230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231
This theorem is referenced by:  erdsze  33796
  Copyright terms: Public domain W3C validator