| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for erdsze 35189. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| Ref | Expression |
|---|---|
| erdsze.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| erdsze.f | ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
| erdszelem.i | ⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| erdszelem.j | ⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| erdszelem.t | ⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) |
| erdszelem.r | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| erdszelem.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
| erdszelem.m | ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) |
| Ref | Expression |
|---|---|
| erdszelem11 | ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erdsze.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | erdsze.f | . . . 4 ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) | |
| 3 | erdszelem.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | |
| 4 | erdszelem.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | |
| 5 | erdszelem.t | . . . 4 ⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) | |
| 6 | erdszelem.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 7 | erdszelem.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
| 8 | erdszelem.m | . . . 4 ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | erdszelem10 35187 | . . 3 ⊢ (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) |
| 10 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → 𝑁 ∈ ℕ) |
| 11 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ) |
| 12 | ltso 11254 | . . . . . . 7 ⊢ < Or ℝ | |
| 13 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → 𝑚 ∈ (1...𝑁)) | |
| 14 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → 𝑅 ∈ ℕ) |
| 15 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1))) | |
| 16 | 10, 11, 3, 12, 13, 14, 15 | erdszelem7 35184 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠)))) |
| 17 | 16 | expr 456 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))))) |
| 18 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → 𝑁 ∈ ℕ) |
| 19 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → 𝐹:(1...𝑁)–1-1→ℝ) |
| 20 | gtso 11255 | . . . . . . 7 ⊢ ◡ < Or ℝ | |
| 21 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → 𝑚 ∈ (1...𝑁)) | |
| 22 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → 𝑆 ∈ ℕ) |
| 23 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))) | |
| 24 | 18, 19, 4, 20, 21, 22, 23 | erdszelem7 35184 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ (1...𝑁) ∧ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))) |
| 25 | 24 | expr 456 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| 26 | 17, 25 | orim12d 966 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ((¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))))) |
| 27 | 26 | rexlimdva 3134 | . . 3 ⊢ (𝜑 → (∃𝑚 ∈ (1...𝑁)(¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))) → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))))) |
| 28 | 9, 27 | mpd 15 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| 29 | r19.43 3101 | . 2 ⊢ (∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))) ↔ (∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) | |
| 30 | 28, 29 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 𝒫 cpw 4563 〈cop 4595 class class class wbr 5107 ↦ cmpt 5188 ◡ccnv 5637 ↾ cres 5640 “ cima 5641 –1-1→wf1 6508 ‘cfv 6511 Isom wiso 6512 (class class class)co 7387 supcsup 9391 ℝcr 11067 1c1 11069 · cmul 11073 < clt 11208 ≤ cle 11209 − cmin 11405 ℕcn 12186 ...cfz 13468 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: erdsze 35189 |
| Copyright terms: Public domain | W3C validator |