MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem2 Structured version   Visualization version   GIF version

Theorem pythagtriplem2 16794
Description: Lemma for pythagtrip 16811. Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
Distinct variable groups:   𝐴,𝑛,𝑚,𝑘   𝐵,𝑛,𝑚,𝑘   𝐶,𝑛,𝑚,𝑘

Proof of Theorem pythagtriplem2
StepHypRef Expression
1 ovex 7422 . . . . . . . 8 (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∈ V
2 ovex 7422 . . . . . . . 8 (𝑘 · (2 · (𝑚 · 𝑛))) ∈ V
3 preq12bg 4819 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝑘 · ((𝑚↑2) − (𝑛↑2))) ∈ V ∧ (𝑘 · (2 · (𝑚 · 𝑛))) ∈ V)) → ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))))))
41, 2, 3mpanr12 705 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))))))
54anbi1d 631 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
6 andir 1010 . . . . . . 7 ((((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
7 df-3an 1088 . . . . . . . 8 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
8 df-3an 1088 . . . . . . . 8 ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
97, 8orbi12i 914 . . . . . . 7 (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
106, 9bitr4i 278 . . . . . 6 ((((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
115, 10bitrdi 287 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
1211rexbidv 3158 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
13122rexbidv 3203 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
14 r19.43 3102 . . . . 5 (∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
15142rexbii 3110 . . . 4 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
16 r19.43 3102 . . . . 5 (∃𝑚 ∈ ℕ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
1716rexbii 3077 . . . 4 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ ∃𝑛 ∈ ℕ (∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
18 r19.43 3102 . . . 4 (∃𝑛 ∈ ℕ (∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
1915, 17, 183bitri 297 . . 3 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
2013, 19bitrdi 287 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
21 pythagtriplem1 16793 . . . 4 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
2221a1i 11 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
23 3ancoma 1097 . . . . . . 7 ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
2423rexbii 3077 . . . . . 6 (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
25242rexbii 3110 . . . . 5 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
26 pythagtriplem1 16793 . . . . 5 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2))
2725, 26sylbi 217 . . . 4 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2))
28 nncn 12195 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
2928sqcld 14115 . . . . . 6 (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℂ)
30 nncn 12195 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
3130sqcld 14115 . . . . . 6 (𝐵 ∈ ℕ → (𝐵↑2) ∈ ℂ)
32 addcom 11366 . . . . . 6 (((𝐴↑2) ∈ ℂ ∧ (𝐵↑2) ∈ ℂ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2)))
3329, 31, 32syl2an 596 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2)))
3433eqeq1d 2732 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2)))
3527, 34imbitrrid 246 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
3622, 35jaod 859 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
3720, 36sylbid 240 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  {cpr 4593  (class class class)co 7389  cc 11072   + caddc 11077   · cmul 11079  cmin 11411  cn 12187  2c2 12242  cexp 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-n0 12449  df-z 12536  df-uz 12800  df-seq 13973  df-exp 14033
This theorem is referenced by:  pythagtrip  16811
  Copyright terms: Public domain W3C validator