MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem2 Structured version   Visualization version   GIF version

Theorem pythagtriplem2 16689
Description: Lemma for pythagtrip 16706. Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
Distinct variable groups:   𝐴,𝑛,𝑚,𝑘   𝐵,𝑛,𝑚,𝑘   𝐶,𝑛,𝑚,𝑘

Proof of Theorem pythagtriplem2
StepHypRef Expression
1 ovex 7390 . . . . . . . 8 (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∈ V
2 ovex 7390 . . . . . . . 8 (𝑘 · (2 · (𝑚 · 𝑛))) ∈ V
3 preq12bg 4811 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝑘 · ((𝑚↑2) − (𝑛↑2))) ∈ V ∧ (𝑘 · (2 · (𝑚 · 𝑛))) ∈ V)) → ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))))))
41, 2, 3mpanr12 703 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))))))
54anbi1d 630 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
6 andir 1007 . . . . . . 7 ((((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
7 df-3an 1089 . . . . . . . 8 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
8 df-3an 1089 . . . . . . . 8 ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
97, 8orbi12i 913 . . . . . . 7 (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
106, 9bitr4i 277 . . . . . 6 ((((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
115, 10bitrdi 286 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
1211rexbidv 3175 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
13122rexbidv 3213 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
14 r19.43 3125 . . . . 5 (∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
15142rexbii 3128 . . . 4 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
16 r19.43 3125 . . . . 5 (∃𝑚 ∈ ℕ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
1716rexbii 3097 . . . 4 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ ∃𝑛 ∈ ℕ (∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
18 r19.43 3125 . . . 4 (∃𝑛 ∈ ℕ (∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
1915, 17, 183bitri 296 . . 3 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
2013, 19bitrdi 286 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
21 pythagtriplem1 16688 . . . 4 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
2221a1i 11 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
23 3ancoma 1098 . . . . . . 7 ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
2423rexbii 3097 . . . . . 6 (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
25242rexbii 3128 . . . . 5 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
26 pythagtriplem1 16688 . . . . 5 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2))
2725, 26sylbi 216 . . . 4 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2))
28 nncn 12161 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
2928sqcld 14049 . . . . . 6 (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℂ)
30 nncn 12161 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
3130sqcld 14049 . . . . . 6 (𝐵 ∈ ℕ → (𝐵↑2) ∈ ℂ)
32 addcom 11341 . . . . . 6 (((𝐴↑2) ∈ ℂ ∧ (𝐵↑2) ∈ ℂ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2)))
3329, 31, 32syl2an 596 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2)))
3433eqeq1d 2738 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2)))
3527, 34syl5ibr 245 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
3622, 35jaod 857 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
3720, 36sylbid 239 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  Vcvv 3445  {cpr 4588  (class class class)co 7357  cc 11049   + caddc 11054   · cmul 11056  cmin 11385  cn 12153  2c2 12208  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-exp 13968
This theorem is referenced by:  pythagtrip  16706
  Copyright terms: Public domain W3C validator