MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  right1s Structured version   Visualization version   GIF version

Theorem right1s 27869
Description: The right set of 1s is empty . (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
right1s ( R ‘ 1s ) = ∅

Proof of Theorem right1s
StepHypRef Expression
1 rightval 27838 . 2 ( R ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥}
2 bday1s 27811 . . . . . 6 ( bday ‘ 1s ) = 1o
32fveq2i 6888 . . . . 5 ( O ‘( bday ‘ 1s )) = ( O ‘1o)
4 old1 27849 . . . . 5 ( O ‘1o) = { 0s }
53, 4eqtri 2757 . . . 4 ( O ‘( bday ‘ 1s )) = { 0s }
65rabeqi 3433 . . 3 {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = {𝑥 ∈ { 0s } ∣ 1s <s 𝑥}
7 breq2 5127 . . . 4 (𝑥 = 0s → ( 1s <s 𝑥 ↔ 1s <s 0s ))
87rabsnif 4703 . . 3 {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅)
96, 8eqtri 2757 . 2 {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅)
10 0slt1s 27809 . . . 4 0s <s 1s
11 0sno 27806 . . . . 5 0s No
12 1sno 27807 . . . . 5 1s No
13 sltasym 27728 . . . . 5 (( 0s No ∧ 1s No ) → ( 0s <s 1s → ¬ 1s <s 0s ))
1411, 12, 13mp2an 692 . . . 4 ( 0s <s 1s → ¬ 1s <s 0s )
1510, 14ax-mp 5 . . 3 ¬ 1s <s 0s
1615iffalsei 4515 . 2 if( 1s <s 0s , { 0s }, ∅) = ∅
171, 9, 163eqtri 2761 1 ( R ‘ 1s ) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  {crab 3419  c0 4313  ifcif 4505  {csn 4606   class class class wbr 5123  cfv 6540  1oc1o 8480   No csur 27619   <s cslt 27620   bday cbday 27621   0s c0s 27802   1s c1s 27803   O cold 27817   R cright 27820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-1o 8487  df-2o 8488  df-no 27622  df-slt 27623  df-bday 27624  df-sle 27725  df-sslt 27761  df-scut 27763  df-0s 27804  df-1s 27805  df-made 27821  df-old 27822  df-right 27825
This theorem is referenced by:  negs1s  27994  mulsrid  28074  1ons  28215
  Copyright terms: Public domain W3C validator