| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > right1s | Structured version Visualization version GIF version | ||
| Description: The right set of 1s is empty . (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| right1s | ⊢ ( R ‘ 1s ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rightval 27808 | . 2 ⊢ ( R ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} | |
| 2 | bday1s 27778 | . . . . . 6 ⊢ ( bday ‘ 1s ) = 1o | |
| 3 | 2 | fveq2i 6833 | . . . . 5 ⊢ ( O ‘( bday ‘ 1s )) = ( O ‘1o) |
| 4 | old1 27823 | . . . . 5 ⊢ ( O ‘1o) = { 0s } | |
| 5 | 3, 4 | eqtri 2756 | . . . 4 ⊢ ( O ‘( bday ‘ 1s )) = { 0s } |
| 6 | 5 | rabeqi 3409 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} |
| 7 | breq2 5099 | . . . 4 ⊢ (𝑥 = 0s → ( 1s <s 𝑥 ↔ 1s <s 0s )) | |
| 8 | 7 | rabsnif 4677 | . . 3 ⊢ {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅) |
| 9 | 6, 8 | eqtri 2756 | . 2 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅) |
| 10 | 0slt1s 27776 | . . . 4 ⊢ 0s <s 1s | |
| 11 | 0sno 27773 | . . . . 5 ⊢ 0s ∈ No | |
| 12 | 1sno 27774 | . . . . 5 ⊢ 1s ∈ No | |
| 13 | sltasym 27690 | . . . . 5 ⊢ (( 0s ∈ No ∧ 1s ∈ No ) → ( 0s <s 1s → ¬ 1s <s 0s )) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . 4 ⊢ ( 0s <s 1s → ¬ 1s <s 0s ) |
| 15 | 10, 14 | ax-mp 5 | . . 3 ⊢ ¬ 1s <s 0s |
| 16 | 15 | iffalsei 4486 | . 2 ⊢ if( 1s <s 0s , { 0s }, ∅) = ∅ |
| 17 | 1, 9, 16 | 3eqtri 2760 | 1 ⊢ ( R ‘ 1s ) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 ∅c0 4282 ifcif 4476 {csn 4577 class class class wbr 5095 ‘cfv 6488 1oc1o 8386 No csur 27581 <s cslt 27582 bday cbday 27583 0s c0s 27769 1s c1s 27770 O cold 27787 R cright 27790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-1o 8393 df-2o 8394 df-no 27584 df-slt 27585 df-bday 27586 df-sle 27687 df-sslt 27724 df-scut 27726 df-0s 27771 df-1s 27772 df-made 27791 df-old 27792 df-right 27795 |
| This theorem is referenced by: negs1s 27972 mulsrid 28055 1ons 28197 |
| Copyright terms: Public domain | W3C validator |