![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > right1s | Structured version Visualization version GIF version |
Description: The right set of 1s is empty . (Contributed by Scott Fenton, 4-Feb-2025.) |
Ref | Expression |
---|---|
right1s | ⊢ ( R ‘ 1s ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rightval 27926 | . 2 ⊢ ( R ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} | |
2 | bday1s 27899 | . . . . . 6 ⊢ ( bday ‘ 1s ) = 1o | |
3 | 2 | fveq2i 6914 | . . . . 5 ⊢ ( O ‘( bday ‘ 1s )) = ( O ‘1o) |
4 | old1 27937 | . . . . 5 ⊢ ( O ‘1o) = { 0s } | |
5 | 3, 4 | eqtri 2764 | . . . 4 ⊢ ( O ‘( bday ‘ 1s )) = { 0s } |
6 | 5 | rabeqi 3448 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} |
7 | breq2 5153 | . . . 4 ⊢ (𝑥 = 0s → ( 1s <s 𝑥 ↔ 1s <s 0s )) | |
8 | 7 | rabsnif 4729 | . . 3 ⊢ {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅) |
9 | 6, 8 | eqtri 2764 | . 2 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅) |
10 | 0slt1s 27897 | . . . 4 ⊢ 0s <s 1s | |
11 | 0sno 27894 | . . . . 5 ⊢ 0s ∈ No | |
12 | 1sno 27895 | . . . . 5 ⊢ 1s ∈ No | |
13 | sltasym 27816 | . . . . 5 ⊢ (( 0s ∈ No ∧ 1s ∈ No ) → ( 0s <s 1s → ¬ 1s <s 0s )) | |
14 | 11, 12, 13 | mp2an 692 | . . . 4 ⊢ ( 0s <s 1s → ¬ 1s <s 0s ) |
15 | 10, 14 | ax-mp 5 | . . 3 ⊢ ¬ 1s <s 0s |
16 | 15 | iffalsei 4542 | . 2 ⊢ if( 1s <s 0s , { 0s }, ∅) = ∅ |
17 | 1, 9, 16 | 3eqtri 2768 | 1 ⊢ ( R ‘ 1s ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1538 ∈ wcel 2107 {crab 3434 ∅c0 4340 ifcif 4532 {csn 4632 class class class wbr 5149 ‘cfv 6566 1oc1o 8504 No csur 27707 <s cslt 27708 bday cbday 27709 0s c0s 27890 1s c1s 27891 O cold 27905 R cright 27908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-1o 8511 df-2o 8512 df-no 27710 df-slt 27711 df-bday 27712 df-sle 27813 df-sslt 27849 df-scut 27851 df-0s 27892 df-1s 27893 df-made 27909 df-old 27910 df-right 27913 |
This theorem is referenced by: negs1s 28082 mulsrid 28162 1ons 28303 |
Copyright terms: Public domain | W3C validator |