![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > right1s | Structured version Visualization version GIF version |
Description: The right set of 1s is empty . (Contributed by Scott Fenton, 4-Feb-2025.) |
Ref | Expression |
---|---|
right1s | ⊢ ( R ‘ 1s ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rightval 27888 | . 2 ⊢ ( R ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} | |
2 | bday1s 27861 | . . . . . 6 ⊢ ( bday ‘ 1s ) = 1o | |
3 | 2 | fveq2i 6904 | . . . . 5 ⊢ ( O ‘( bday ‘ 1s )) = ( O ‘1o) |
4 | old1 27899 | . . . . 5 ⊢ ( O ‘1o) = { 0s } | |
5 | 3, 4 | eqtri 2754 | . . . 4 ⊢ ( O ‘( bday ‘ 1s )) = { 0s } |
6 | 5 | rabeqi 3433 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} |
7 | breq2 5157 | . . . 4 ⊢ (𝑥 = 0s → ( 1s <s 𝑥 ↔ 1s <s 0s )) | |
8 | 7 | rabsnif 4732 | . . 3 ⊢ {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅) |
9 | 6, 8 | eqtri 2754 | . 2 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅) |
10 | 0slt1s 27859 | . . . 4 ⊢ 0s <s 1s | |
11 | 0sno 27856 | . . . . 5 ⊢ 0s ∈ No | |
12 | 1sno 27857 | . . . . 5 ⊢ 1s ∈ No | |
13 | sltasym 27778 | . . . . 5 ⊢ (( 0s ∈ No ∧ 1s ∈ No ) → ( 0s <s 1s → ¬ 1s <s 0s )) | |
14 | 11, 12, 13 | mp2an 690 | . . . 4 ⊢ ( 0s <s 1s → ¬ 1s <s 0s ) |
15 | 10, 14 | ax-mp 5 | . . 3 ⊢ ¬ 1s <s 0s |
16 | 15 | iffalsei 4543 | . 2 ⊢ if( 1s <s 0s , { 0s }, ∅) = ∅ |
17 | 1, 9, 16 | 3eqtri 2758 | 1 ⊢ ( R ‘ 1s ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3419 ∅c0 4325 ifcif 4533 {csn 4633 class class class wbr 5153 ‘cfv 6554 1oc1o 8489 No csur 27669 <s cslt 27670 bday cbday 27671 0s c0s 27852 1s c1s 27853 O cold 27867 R cright 27870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-1o 8496 df-2o 8497 df-no 27672 df-slt 27673 df-bday 27674 df-sle 27775 df-sslt 27811 df-scut 27813 df-0s 27854 df-1s 27855 df-made 27871 df-old 27872 df-right 27875 |
This theorem is referenced by: mulsrid 28114 1ons 28251 |
Copyright terms: Public domain | W3C validator |