| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > right1s | Structured version Visualization version GIF version | ||
| Description: The right set of 1s is empty . (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| right1s | ⊢ ( R ‘ 1s ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rightval 27772 | . 2 ⊢ ( R ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} | |
| 2 | bday1s 27743 | . . . . . 6 ⊢ ( bday ‘ 1s ) = 1o | |
| 3 | 2 | fveq2i 6861 | . . . . 5 ⊢ ( O ‘( bday ‘ 1s )) = ( O ‘1o) |
| 4 | old1 27787 | . . . . 5 ⊢ ( O ‘1o) = { 0s } | |
| 5 | 3, 4 | eqtri 2752 | . . . 4 ⊢ ( O ‘( bday ‘ 1s )) = { 0s } |
| 6 | 5 | rabeqi 3419 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} |
| 7 | breq2 5111 | . . . 4 ⊢ (𝑥 = 0s → ( 1s <s 𝑥 ↔ 1s <s 0s )) | |
| 8 | 7 | rabsnif 4687 | . . 3 ⊢ {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅) |
| 9 | 6, 8 | eqtri 2752 | . 2 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅) |
| 10 | 0slt1s 27741 | . . . 4 ⊢ 0s <s 1s | |
| 11 | 0sno 27738 | . . . . 5 ⊢ 0s ∈ No | |
| 12 | 1sno 27739 | . . . . 5 ⊢ 1s ∈ No | |
| 13 | sltasym 27660 | . . . . 5 ⊢ (( 0s ∈ No ∧ 1s ∈ No ) → ( 0s <s 1s → ¬ 1s <s 0s )) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . 4 ⊢ ( 0s <s 1s → ¬ 1s <s 0s ) |
| 15 | 10, 14 | ax-mp 5 | . . 3 ⊢ ¬ 1s <s 0s |
| 16 | 15 | iffalsei 4498 | . 2 ⊢ if( 1s <s 0s , { 0s }, ∅) = ∅ |
| 17 | 1, 9, 16 | 3eqtri 2756 | 1 ⊢ ( R ‘ 1s ) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 ∅c0 4296 ifcif 4488 {csn 4589 class class class wbr 5107 ‘cfv 6511 1oc1o 8427 No csur 27551 <s cslt 27552 bday cbday 27553 0s c0s 27734 1s c1s 27735 O cold 27751 R cright 27754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-1s 27737 df-made 27755 df-old 27756 df-right 27759 |
| This theorem is referenced by: negs1s 27933 mulsrid 28016 1ons 28158 |
| Copyright terms: Public domain | W3C validator |