| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > right1s | Structured version Visualization version GIF version | ||
| Description: The right set of 1s is empty . (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| right1s | ⊢ ( R ‘ 1s ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rightval 27779 | . 2 ⊢ ( R ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} | |
| 2 | bday1s 27750 | . . . . . 6 ⊢ ( bday ‘ 1s ) = 1o | |
| 3 | 2 | fveq2i 6868 | . . . . 5 ⊢ ( O ‘( bday ‘ 1s )) = ( O ‘1o) |
| 4 | old1 27794 | . . . . 5 ⊢ ( O ‘1o) = { 0s } | |
| 5 | 3, 4 | eqtri 2753 | . . . 4 ⊢ ( O ‘( bday ‘ 1s )) = { 0s } |
| 6 | 5 | rabeqi 3425 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} |
| 7 | breq2 5119 | . . . 4 ⊢ (𝑥 = 0s → ( 1s <s 𝑥 ↔ 1s <s 0s )) | |
| 8 | 7 | rabsnif 4695 | . . 3 ⊢ {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅) |
| 9 | 6, 8 | eqtri 2753 | . 2 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅) |
| 10 | 0slt1s 27748 | . . . 4 ⊢ 0s <s 1s | |
| 11 | 0sno 27745 | . . . . 5 ⊢ 0s ∈ No | |
| 12 | 1sno 27746 | . . . . 5 ⊢ 1s ∈ No | |
| 13 | sltasym 27667 | . . . . 5 ⊢ (( 0s ∈ No ∧ 1s ∈ No ) → ( 0s <s 1s → ¬ 1s <s 0s )) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . 4 ⊢ ( 0s <s 1s → ¬ 1s <s 0s ) |
| 15 | 10, 14 | ax-mp 5 | . . 3 ⊢ ¬ 1s <s 0s |
| 16 | 15 | iffalsei 4506 | . 2 ⊢ if( 1s <s 0s , { 0s }, ∅) = ∅ |
| 17 | 1, 9, 16 | 3eqtri 2757 | 1 ⊢ ( R ‘ 1s ) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3411 ∅c0 4304 ifcif 4496 {csn 4597 class class class wbr 5115 ‘cfv 6519 1oc1o 8436 No csur 27558 <s cslt 27559 bday cbday 27560 0s c0s 27741 1s c1s 27742 O cold 27758 R cright 27761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-1o 8443 df-2o 8444 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-1s 27744 df-made 27762 df-old 27763 df-right 27766 |
| This theorem is referenced by: negs1s 27940 mulsrid 28023 1ons 28165 |
| Copyright terms: Public domain | W3C validator |