MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  right1s Structured version   Visualization version   GIF version

Theorem right1s 27844
Description: The right set of 1s is empty . (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
right1s ( R ‘ 1s ) = ∅

Proof of Theorem right1s
StepHypRef Expression
1 rightval 27808 . 2 ( R ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥}
2 bday1s 27778 . . . . . 6 ( bday ‘ 1s ) = 1o
32fveq2i 6833 . . . . 5 ( O ‘( bday ‘ 1s )) = ( O ‘1o)
4 old1 27823 . . . . 5 ( O ‘1o) = { 0s }
53, 4eqtri 2756 . . . 4 ( O ‘( bday ‘ 1s )) = { 0s }
65rabeqi 3409 . . 3 {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = {𝑥 ∈ { 0s } ∣ 1s <s 𝑥}
7 breq2 5099 . . . 4 (𝑥 = 0s → ( 1s <s 𝑥 ↔ 1s <s 0s ))
87rabsnif 4677 . . 3 {𝑥 ∈ { 0s } ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅)
96, 8eqtri 2756 . 2 {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 1s <s 𝑥} = if( 1s <s 0s , { 0s }, ∅)
10 0slt1s 27776 . . . 4 0s <s 1s
11 0sno 27773 . . . . 5 0s No
12 1sno 27774 . . . . 5 1s No
13 sltasym 27690 . . . . 5 (( 0s No ∧ 1s No ) → ( 0s <s 1s → ¬ 1s <s 0s ))
1411, 12, 13mp2an 692 . . . 4 ( 0s <s 1s → ¬ 1s <s 0s )
1510, 14ax-mp 5 . . 3 ¬ 1s <s 0s
1615iffalsei 4486 . 2 if( 1s <s 0s , { 0s }, ∅) = ∅
171, 9, 163eqtri 2760 1 ( R ‘ 1s ) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  {crab 3396  c0 4282  ifcif 4476  {csn 4577   class class class wbr 5095  cfv 6488  1oc1o 8386   No csur 27581   <s cslt 27582   bday cbday 27583   0s c0s 27769   1s c1s 27770   O cold 27787   R cright 27790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-1o 8393  df-2o 8394  df-no 27584  df-slt 27585  df-bday 27586  df-sle 27687  df-sslt 27724  df-scut 27726  df-0s 27771  df-1s 27772  df-made 27791  df-old 27792  df-right 27795
This theorem is referenced by:  negs1s  27972  mulsrid  28055  1ons  28197
  Copyright terms: Public domain W3C validator