MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  left1s Structured version   Visualization version   GIF version

Theorem left1s 27389
Description: The left set of 1s is the singleton of 0s. (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
left1s ( L ‘ 1s ) = { 0s }

Proof of Theorem left1s
StepHypRef Expression
1 leftval 27358 . 2 ( L ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s }
2 bday1s 27332 . . . . . 6 ( bday ‘ 1s ) = 1o
32fveq2i 6895 . . . . 5 ( O ‘( bday ‘ 1s )) = ( O ‘1o)
4 old1 27370 . . . . 5 ( O ‘1o) = { 0s }
53, 4eqtri 2761 . . . 4 ( O ‘( bday ‘ 1s )) = { 0s }
65rabeqi 3446 . . 3 {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s }
7 breq1 5152 . . . 4 (𝑥 = 0s → (𝑥 <s 1s ↔ 0s <s 1s ))
87rabsnif 4728 . . 3 {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅)
96, 8eqtri 2761 . 2 {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅)
10 0slt1s 27330 . . 3 0s <s 1s
1110iftruei 4536 . 2 if( 0s <s 1s , { 0s }, ∅) = { 0s }
121, 9, 113eqtri 2765 1 ( L ‘ 1s ) = { 0s }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  {crab 3433  c0 4323  ifcif 4529  {csn 4629   class class class wbr 5149  cfv 6544  1oc1o 8459   <s cslt 27144   bday cbday 27145   0s c0s 27323   1s c1s 27324   O cold 27338   L cleft 27340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-1o 8466  df-2o 8467  df-no 27146  df-slt 27147  df-bday 27148  df-sle 27248  df-sslt 27283  df-scut 27285  df-0s 27325  df-1s 27326  df-made 27342  df-old 27343  df-left 27345
This theorem is referenced by:  mulsrid  27569
  Copyright terms: Public domain W3C validator