![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > left1s | Structured version Visualization version GIF version |
Description: The left set of 1s is the singleton of 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
Ref | Expression |
---|---|
left1s | ⊢ ( L ‘ 1s ) = { 0s } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leftval 27358 | . 2 ⊢ ( L ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } | |
2 | bday1s 27332 | . . . . . 6 ⊢ ( bday ‘ 1s ) = 1o | |
3 | 2 | fveq2i 6895 | . . . . 5 ⊢ ( O ‘( bday ‘ 1s )) = ( O ‘1o) |
4 | old1 27370 | . . . . 5 ⊢ ( O ‘1o) = { 0s } | |
5 | 3, 4 | eqtri 2761 | . . . 4 ⊢ ( O ‘( bday ‘ 1s )) = { 0s } |
6 | 5 | rabeqi 3446 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } |
7 | breq1 5152 | . . . 4 ⊢ (𝑥 = 0s → (𝑥 <s 1s ↔ 0s <s 1s )) | |
8 | 7 | rabsnif 4728 | . . 3 ⊢ {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅) |
9 | 6, 8 | eqtri 2761 | . 2 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅) |
10 | 0slt1s 27330 | . . 3 ⊢ 0s <s 1s | |
11 | 10 | iftruei 4536 | . 2 ⊢ if( 0s <s 1s , { 0s }, ∅) = { 0s } |
12 | 1, 9, 11 | 3eqtri 2765 | 1 ⊢ ( L ‘ 1s ) = { 0s } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 {crab 3433 ∅c0 4323 ifcif 4529 {csn 4629 class class class wbr 5149 ‘cfv 6544 1oc1o 8459 <s cslt 27144 bday cbday 27145 0s c0s 27323 1s c1s 27324 O cold 27338 L cleft 27340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-1o 8466 df-2o 8467 df-no 27146 df-slt 27147 df-bday 27148 df-sle 27248 df-sslt 27283 df-scut 27285 df-0s 27325 df-1s 27326 df-made 27342 df-old 27343 df-left 27345 |
This theorem is referenced by: mulsrid 27569 |
Copyright terms: Public domain | W3C validator |