| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > left1s | Structured version Visualization version GIF version | ||
| Description: The left set of 1s is the singleton of 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| left1s | ⊢ ( L ‘ 1s ) = { 0s } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leftval 27838 | . 2 ⊢ ( L ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } | |
| 2 | bday1s 27812 | . . . . . 6 ⊢ ( bday ‘ 1s ) = 1o | |
| 3 | 2 | fveq2i 6889 | . . . . 5 ⊢ ( O ‘( bday ‘ 1s )) = ( O ‘1o) |
| 4 | old1 27850 | . . . . 5 ⊢ ( O ‘1o) = { 0s } | |
| 5 | 3, 4 | eqtri 2757 | . . . 4 ⊢ ( O ‘( bday ‘ 1s )) = { 0s } |
| 6 | 5 | rabeqi 3433 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } |
| 7 | breq1 5126 | . . . 4 ⊢ (𝑥 = 0s → (𝑥 <s 1s ↔ 0s <s 1s )) | |
| 8 | 7 | rabsnif 4703 | . . 3 ⊢ {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅) |
| 9 | 6, 8 | eqtri 2757 | . 2 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅) |
| 10 | 0slt1s 27810 | . . 3 ⊢ 0s <s 1s | |
| 11 | 10 | iftruei 4512 | . 2 ⊢ if( 0s <s 1s , { 0s }, ∅) = { 0s } |
| 12 | 1, 9, 11 | 3eqtri 2761 | 1 ⊢ ( L ‘ 1s ) = { 0s } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {crab 3419 ∅c0 4313 ifcif 4505 {csn 4606 class class class wbr 5123 ‘cfv 6541 1oc1o 8481 <s cslt 27621 bday cbday 27622 0s c0s 27803 1s c1s 27804 O cold 27818 L cleft 27820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-1o 8488 df-2o 8489 df-no 27623 df-slt 27624 df-bday 27625 df-sle 27726 df-sslt 27762 df-scut 27764 df-0s 27805 df-1s 27806 df-made 27822 df-old 27823 df-left 27825 |
| This theorem is referenced by: negs1s 27995 mulsrid 28075 |
| Copyright terms: Public domain | W3C validator |