MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  left1s Structured version   Visualization version   GIF version

Theorem left1s 27863
Description: The left set of 1s is the singleton of 0s. (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
left1s ( L ‘ 1s ) = { 0s }

Proof of Theorem left1s
StepHypRef Expression
1 leftval 27828 . 2 ( L ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s }
2 bday1s 27800 . . . . . 6 ( bday ‘ 1s ) = 1o
32fveq2i 6884 . . . . 5 ( O ‘( bday ‘ 1s )) = ( O ‘1o)
4 old1 27844 . . . . 5 ( O ‘1o) = { 0s }
53, 4eqtri 2759 . . . 4 ( O ‘( bday ‘ 1s )) = { 0s }
65rabeqi 3434 . . 3 {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s }
7 breq1 5127 . . . 4 (𝑥 = 0s → (𝑥 <s 1s ↔ 0s <s 1s ))
87rabsnif 4704 . . 3 {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅)
96, 8eqtri 2759 . 2 {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅)
10 0slt1s 27798 . . 3 0s <s 1s
1110iftruei 4512 . 2 if( 0s <s 1s , { 0s }, ∅) = { 0s }
121, 9, 113eqtri 2763 1 ( L ‘ 1s ) = { 0s }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {crab 3420  c0 4313  ifcif 4505  {csn 4606   class class class wbr 5124  cfv 6536  1oc1o 8478   <s cslt 27609   bday cbday 27610   0s c0s 27791   1s c1s 27792   O cold 27808   L cleft 27810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815
This theorem is referenced by:  negs1s  27990  mulsrid  28073
  Copyright terms: Public domain W3C validator