MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  left1s Structured version   Visualization version   GIF version

Theorem left1s 27841
Description: The left set of 1s is the singleton of 0s. (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
left1s ( L ‘ 1s ) = { 0s }

Proof of Theorem left1s
StepHypRef Expression
1 leftval 27805 . 2 ( L ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s }
2 bday1s 27776 . . . . . 6 ( bday ‘ 1s ) = 1o
32fveq2i 6831 . . . . 5 ( O ‘( bday ‘ 1s )) = ( O ‘1o)
4 old1 27821 . . . . 5 ( O ‘1o) = { 0s }
53, 4eqtri 2756 . . . 4 ( O ‘( bday ‘ 1s )) = { 0s }
65rabeqi 3409 . . 3 {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s }
7 breq1 5096 . . . 4 (𝑥 = 0s → (𝑥 <s 1s ↔ 0s <s 1s ))
87rabsnif 4675 . . 3 {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅)
96, 8eqtri 2756 . 2 {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅)
10 0slt1s 27774 . . 3 0s <s 1s
1110iftruei 4481 . 2 if( 0s <s 1s , { 0s }, ∅) = { 0s }
121, 9, 113eqtri 2760 1 ( L ‘ 1s ) = { 0s }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {crab 3396  c0 4282  ifcif 4474  {csn 4575   class class class wbr 5093  cfv 6486  1oc1o 8384   <s cslt 27580   bday cbday 27581   0s c0s 27767   1s c1s 27768   O cold 27785   L cleft 27787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-1s 27770  df-made 27789  df-old 27790  df-left 27792
This theorem is referenced by:  negs1s  27970  mulsrid  28053
  Copyright terms: Public domain W3C validator