| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > left1s | Structured version Visualization version GIF version | ||
| Description: The left set of 1s is the singleton of 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| left1s | ⊢ ( L ‘ 1s ) = { 0s } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leftval 27828 | . 2 ⊢ ( L ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } | |
| 2 | bday1s 27800 | . . . . . 6 ⊢ ( bday ‘ 1s ) = 1o | |
| 3 | 2 | fveq2i 6884 | . . . . 5 ⊢ ( O ‘( bday ‘ 1s )) = ( O ‘1o) |
| 4 | old1 27844 | . . . . 5 ⊢ ( O ‘1o) = { 0s } | |
| 5 | 3, 4 | eqtri 2759 | . . . 4 ⊢ ( O ‘( bday ‘ 1s )) = { 0s } |
| 6 | 5 | rabeqi 3434 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } |
| 7 | breq1 5127 | . . . 4 ⊢ (𝑥 = 0s → (𝑥 <s 1s ↔ 0s <s 1s )) | |
| 8 | 7 | rabsnif 4704 | . . 3 ⊢ {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅) |
| 9 | 6, 8 | eqtri 2759 | . 2 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅) |
| 10 | 0slt1s 27798 | . . 3 ⊢ 0s <s 1s | |
| 11 | 10 | iftruei 4512 | . 2 ⊢ if( 0s <s 1s , { 0s }, ∅) = { 0s } |
| 12 | 1, 9, 11 | 3eqtri 2763 | 1 ⊢ ( L ‘ 1s ) = { 0s } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {crab 3420 ∅c0 4313 ifcif 4505 {csn 4606 class class class wbr 5124 ‘cfv 6536 1oc1o 8478 <s cslt 27609 bday cbday 27610 0s c0s 27791 1s c1s 27792 O cold 27808 L cleft 27810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-bday 27613 df-sle 27714 df-sslt 27750 df-scut 27752 df-0s 27793 df-1s 27794 df-made 27812 df-old 27813 df-left 27815 |
| This theorem is referenced by: negs1s 27990 mulsrid 28073 |
| Copyright terms: Public domain | W3C validator |