| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > left1s | Structured version Visualization version GIF version | ||
| Description: The left set of 1s is the singleton of 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| left1s | ⊢ ( L ‘ 1s ) = { 0s } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leftval 27778 | . 2 ⊢ ( L ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } | |
| 2 | bday1s 27750 | . . . . . 6 ⊢ ( bday ‘ 1s ) = 1o | |
| 3 | 2 | fveq2i 6864 | . . . . 5 ⊢ ( O ‘( bday ‘ 1s )) = ( O ‘1o) |
| 4 | old1 27794 | . . . . 5 ⊢ ( O ‘1o) = { 0s } | |
| 5 | 3, 4 | eqtri 2753 | . . . 4 ⊢ ( O ‘( bday ‘ 1s )) = { 0s } |
| 6 | 5 | rabeqi 3422 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } |
| 7 | breq1 5113 | . . . 4 ⊢ (𝑥 = 0s → (𝑥 <s 1s ↔ 0s <s 1s )) | |
| 8 | 7 | rabsnif 4690 | . . 3 ⊢ {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅) |
| 9 | 6, 8 | eqtri 2753 | . 2 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅) |
| 10 | 0slt1s 27748 | . . 3 ⊢ 0s <s 1s | |
| 11 | 10 | iftruei 4498 | . 2 ⊢ if( 0s <s 1s , { 0s }, ∅) = { 0s } |
| 12 | 1, 9, 11 | 3eqtri 2757 | 1 ⊢ ( L ‘ 1s ) = { 0s } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {crab 3408 ∅c0 4299 ifcif 4491 {csn 4592 class class class wbr 5110 ‘cfv 6514 1oc1o 8430 <s cslt 27559 bday cbday 27560 0s c0s 27741 1s c1s 27742 O cold 27758 L cleft 27760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-1s 27744 df-made 27762 df-old 27763 df-left 27765 |
| This theorem is referenced by: negs1s 27940 mulsrid 28023 |
| Copyright terms: Public domain | W3C validator |