| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > left1s | Structured version Visualization version GIF version | ||
| Description: The left set of 1s is the singleton of 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| left1s | ⊢ ( L ‘ 1s ) = { 0s } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leftval 27791 | . 2 ⊢ ( L ‘ 1s ) = {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } | |
| 2 | bday1s 27763 | . . . . . 6 ⊢ ( bday ‘ 1s ) = 1o | |
| 3 | 2 | fveq2i 6829 | . . . . 5 ⊢ ( O ‘( bday ‘ 1s )) = ( O ‘1o) |
| 4 | old1 27807 | . . . . 5 ⊢ ( O ‘1o) = { 0s } | |
| 5 | 3, 4 | eqtri 2752 | . . . 4 ⊢ ( O ‘( bday ‘ 1s )) = { 0s } |
| 6 | 5 | rabeqi 3410 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } |
| 7 | breq1 5098 | . . . 4 ⊢ (𝑥 = 0s → (𝑥 <s 1s ↔ 0s <s 1s )) | |
| 8 | 7 | rabsnif 4677 | . . 3 ⊢ {𝑥 ∈ { 0s } ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅) |
| 9 | 6, 8 | eqtri 2752 | . 2 ⊢ {𝑥 ∈ ( O ‘( bday ‘ 1s )) ∣ 𝑥 <s 1s } = if( 0s <s 1s , { 0s }, ∅) |
| 10 | 0slt1s 27761 | . . 3 ⊢ 0s <s 1s | |
| 11 | 10 | iftruei 4485 | . 2 ⊢ if( 0s <s 1s , { 0s }, ∅) = { 0s } |
| 12 | 1, 9, 11 | 3eqtri 2756 | 1 ⊢ ( L ‘ 1s ) = { 0s } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {crab 3396 ∅c0 4286 ifcif 4478 {csn 4579 class class class wbr 5095 ‘cfv 6486 1oc1o 8388 <s cslt 27568 bday cbday 27569 0s c0s 27754 1s c1s 27755 O cold 27771 L cleft 27773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 df-bday 27572 df-sle 27673 df-sslt 27710 df-scut 27712 df-0s 27756 df-1s 27757 df-made 27775 df-old 27776 df-left 27778 |
| This theorem is referenced by: negs1s 27956 mulsrid 28039 |
| Copyright terms: Public domain | W3C validator |