MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1egrvtxdg1 Structured version   Visualization version   GIF version

Theorem 1egrvtxdg1 29440
Description: The vertex degree of a one-edge graph, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1egrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1egrvtxdg1.a (𝜑𝐴𝑋)
1egrvtxdg1.b (𝜑𝐵𝑉)
1egrvtxdg1.c (𝜑𝐶𝑉)
1egrvtxdg1.n (𝜑𝐵𝐶)
1egrvtxdg1.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
1egrvtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)

Proof of Theorem 1egrvtxdg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 1egrvtxdg1.a . . . 4 (𝜑𝐴𝑋)
3 1egrvtxdg1.b . . . . 5 (𝜑𝐵𝑉)
4 1egrvtxdg1.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
53, 4eleqtrrd 2829 . . . 4 (𝜑𝐵 ∈ (Vtx‘𝐺))
6 1egrvtxdg1.c . . . . 5 (𝜑𝐶𝑉)
76, 4eleqtrrd 2829 . . . 4 (𝜑𝐶 ∈ (Vtx‘𝐺))
8 1egrvtxdg1.i . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
9 1egrvtxdg1.n . . . 4 (𝜑𝐵𝐶)
101, 2, 5, 7, 8, 9usgr1e 29175 . . 3 (𝜑𝐺 ∈ USGraph)
11 eqid 2726 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
12 eqid 2726 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
13 eqid 2726 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
141, 11, 12, 13vtxdusgrval 29418 . . 3 ((𝐺 ∈ USGraph ∧ 𝐵 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐵) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}))
1510, 5, 14syl2anc 582 . 2 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}))
16 dmeq 5900 . . . . . . . 8 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
1716adantl 480 . . . . . . 7 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
18 prex 5428 . . . . . . . 8 {𝐵, 𝐶} ∈ V
19 dmsnopg 6214 . . . . . . . 8 ({𝐵, 𝐶} ∈ V → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2018, 19mp1i 13 . . . . . . 7 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2117, 20eqtrd 2766 . . . . . 6 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom (iEdg‘𝐺) = {𝐴})
22 fveq1 6889 . . . . . . . 8 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → ((iEdg‘𝐺)‘𝑥) = ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥))
2322eleq2d 2812 . . . . . . 7 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → (𝐵 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)))
2423adantl 480 . . . . . 6 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (𝐵 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)))
2521, 24rabeqbidv 3437 . . . . 5 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)})
2625fveq2d 6894 . . . 4 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}))
27 fveq2 6890 . . . . . . . . . 10 (𝑥 = 𝐴 → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥) = ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴))
2827eleq2d 2812 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴)))
2928rabsnif 4722 . . . . . . . 8 {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)} = if(𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴), {𝐴}, ∅)
30 prid1g 4759 . . . . . . . . . . 11 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
313, 30syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ {𝐵, 𝐶})
32 fvsng 7183 . . . . . . . . . . 11 ((𝐴𝑋 ∧ {𝐵, 𝐶} ∈ V) → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴) = {𝐵, 𝐶})
332, 18, 32sylancl 584 . . . . . . . . . 10 (𝜑 → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴) = {𝐵, 𝐶})
3431, 33eleqtrrd 2829 . . . . . . . . 9 (𝜑𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴))
3534iftrued 4531 . . . . . . . 8 (𝜑 → if(𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴), {𝐴}, ∅) = {𝐴})
3629, 35eqtrid 2778 . . . . . . 7 (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)} = {𝐴})
3736fveq2d 6894 . . . . . 6 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = (♯‘{𝐴}))
38 hashsng 14378 . . . . . . 7 (𝐴𝑋 → (♯‘{𝐴}) = 1)
392, 38syl 17 . . . . . 6 (𝜑 → (♯‘{𝐴}) = 1)
4037, 39eqtrd 2766 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = 1)
4140adantr 479 . . . 4 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = 1)
4226, 41eqtrd 2766 . . 3 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
438, 42mpdan 685 . 2 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
4415, 43eqtrd 2766 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  {crab 3419  Vcvv 3462  c0 4322  ifcif 4523  {csn 4623  {cpr 4625  cop 4629  dom cdm 5672  cfv 6543  1c1 11147  chash 14339  Vtxcvtx 28926  iEdgciedg 28927  USGraphcusgr 29079  VtxDegcvtxdg 29396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-dju 9934  df-card 9972  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-2 12318  df-n0 12516  df-xnn0 12588  df-z 12602  df-uz 12866  df-xadd 13138  df-fz 13530  df-hash 14340  df-edg 28978  df-upgr 29012  df-umgr 29013  df-uspgr 29080  df-usgr 29081  df-vtxdg 29397
This theorem is referenced by:  1egrvtxdg1r  29441
  Copyright terms: Public domain W3C validator