MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1egrvtxdg1 Structured version   Visualization version   GIF version

Theorem 1egrvtxdg1 29444
Description: The vertex degree of a one-edge graph, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1egrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1egrvtxdg1.a (𝜑𝐴𝑋)
1egrvtxdg1.b (𝜑𝐵𝑉)
1egrvtxdg1.c (𝜑𝐶𝑉)
1egrvtxdg1.n (𝜑𝐵𝐶)
1egrvtxdg1.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
1egrvtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)

Proof of Theorem 1egrvtxdg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 1egrvtxdg1.a . . . 4 (𝜑𝐴𝑋)
3 1egrvtxdg1.b . . . . 5 (𝜑𝐵𝑉)
4 1egrvtxdg1.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
53, 4eleqtrrd 2832 . . . 4 (𝜑𝐵 ∈ (Vtx‘𝐺))
6 1egrvtxdg1.c . . . . 5 (𝜑𝐶𝑉)
76, 4eleqtrrd 2832 . . . 4 (𝜑𝐶 ∈ (Vtx‘𝐺))
8 1egrvtxdg1.i . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
9 1egrvtxdg1.n . . . 4 (𝜑𝐵𝐶)
101, 2, 5, 7, 8, 9usgr1e 29179 . . 3 (𝜑𝐺 ∈ USGraph)
11 eqid 2730 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
12 eqid 2730 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
13 eqid 2730 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
141, 11, 12, 13vtxdusgrval 29422 . . 3 ((𝐺 ∈ USGraph ∧ 𝐵 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐵) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}))
1510, 5, 14syl2anc 584 . 2 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}))
16 dmeq 5870 . . . . . . . 8 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
1716adantl 481 . . . . . . 7 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
18 prex 5395 . . . . . . . 8 {𝐵, 𝐶} ∈ V
19 dmsnopg 6189 . . . . . . . 8 ({𝐵, 𝐶} ∈ V → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2018, 19mp1i 13 . . . . . . 7 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2117, 20eqtrd 2765 . . . . . 6 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom (iEdg‘𝐺) = {𝐴})
22 fveq1 6860 . . . . . . . 8 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → ((iEdg‘𝐺)‘𝑥) = ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥))
2322eleq2d 2815 . . . . . . 7 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → (𝐵 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)))
2423adantl 481 . . . . . 6 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (𝐵 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)))
2521, 24rabeqbidv 3427 . . . . 5 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)})
2625fveq2d 6865 . . . 4 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}))
27 fveq2 6861 . . . . . . . . . 10 (𝑥 = 𝐴 → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥) = ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴))
2827eleq2d 2815 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴)))
2928rabsnif 4690 . . . . . . . 8 {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)} = if(𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴), {𝐴}, ∅)
30 prid1g 4727 . . . . . . . . . . 11 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
313, 30syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ {𝐵, 𝐶})
32 fvsng 7157 . . . . . . . . . . 11 ((𝐴𝑋 ∧ {𝐵, 𝐶} ∈ V) → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴) = {𝐵, 𝐶})
332, 18, 32sylancl 586 . . . . . . . . . 10 (𝜑 → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴) = {𝐵, 𝐶})
3431, 33eleqtrrd 2832 . . . . . . . . 9 (𝜑𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴))
3534iftrued 4499 . . . . . . . 8 (𝜑 → if(𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴), {𝐴}, ∅) = {𝐴})
3629, 35eqtrid 2777 . . . . . . 7 (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)} = {𝐴})
3736fveq2d 6865 . . . . . 6 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = (♯‘{𝐴}))
38 hashsng 14341 . . . . . . 7 (𝐴𝑋 → (♯‘{𝐴}) = 1)
392, 38syl 17 . . . . . 6 (𝜑 → (♯‘{𝐴}) = 1)
4037, 39eqtrd 2765 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = 1)
4140adantr 480 . . . 4 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = 1)
4226, 41eqtrd 2765 . . 3 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
438, 42mpdan 687 . 2 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
4415, 43eqtrd 2765 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  c0 4299  ifcif 4491  {csn 4592  {cpr 4594  cop 4598  dom cdm 5641  cfv 6514  1c1 11076  chash 14302  Vtxcvtx 28930  iEdgciedg 28931  USGraphcusgr 29083  VtxDegcvtxdg 29400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-xadd 13080  df-fz 13476  df-hash 14303  df-edg 28982  df-upgr 29016  df-umgr 29017  df-uspgr 29084  df-usgr 29085  df-vtxdg 29401
This theorem is referenced by:  1egrvtxdg1r  29445
  Copyright terms: Public domain W3C validator