MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1egrvtxdg1 Structured version   Visualization version   GIF version

Theorem 1egrvtxdg1 29527
Description: The vertex degree of a one-edge graph, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1egrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1egrvtxdg1.a (𝜑𝐴𝑋)
1egrvtxdg1.b (𝜑𝐵𝑉)
1egrvtxdg1.c (𝜑𝐶𝑉)
1egrvtxdg1.n (𝜑𝐵𝐶)
1egrvtxdg1.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
1egrvtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)

Proof of Theorem 1egrvtxdg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 1egrvtxdg1.a . . . 4 (𝜑𝐴𝑋)
3 1egrvtxdg1.b . . . . 5 (𝜑𝐵𝑉)
4 1egrvtxdg1.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
53, 4eleqtrrd 2844 . . . 4 (𝜑𝐵 ∈ (Vtx‘𝐺))
6 1egrvtxdg1.c . . . . 5 (𝜑𝐶𝑉)
76, 4eleqtrrd 2844 . . . 4 (𝜑𝐶 ∈ (Vtx‘𝐺))
8 1egrvtxdg1.i . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
9 1egrvtxdg1.n . . . 4 (𝜑𝐵𝐶)
101, 2, 5, 7, 8, 9usgr1e 29262 . . 3 (𝜑𝐺 ∈ USGraph)
11 eqid 2737 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
12 eqid 2737 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
13 eqid 2737 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
141, 11, 12, 13vtxdusgrval 29505 . . 3 ((𝐺 ∈ USGraph ∧ 𝐵 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐵) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}))
1510, 5, 14syl2anc 584 . 2 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}))
16 dmeq 5914 . . . . . . . 8 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
1716adantl 481 . . . . . . 7 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
18 prex 5437 . . . . . . . 8 {𝐵, 𝐶} ∈ V
19 dmsnopg 6233 . . . . . . . 8 ({𝐵, 𝐶} ∈ V → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2018, 19mp1i 13 . . . . . . 7 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2117, 20eqtrd 2777 . . . . . 6 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom (iEdg‘𝐺) = {𝐴})
22 fveq1 6905 . . . . . . . 8 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → ((iEdg‘𝐺)‘𝑥) = ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥))
2322eleq2d 2827 . . . . . . 7 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → (𝐵 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)))
2423adantl 481 . . . . . 6 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (𝐵 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)))
2521, 24rabeqbidv 3455 . . . . 5 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)})
2625fveq2d 6910 . . . 4 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}))
27 fveq2 6906 . . . . . . . . . 10 (𝑥 = 𝐴 → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥) = ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴))
2827eleq2d 2827 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴)))
2928rabsnif 4723 . . . . . . . 8 {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)} = if(𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴), {𝐴}, ∅)
30 prid1g 4760 . . . . . . . . . . 11 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
313, 30syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ {𝐵, 𝐶})
32 fvsng 7200 . . . . . . . . . . 11 ((𝐴𝑋 ∧ {𝐵, 𝐶} ∈ V) → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴) = {𝐵, 𝐶})
332, 18, 32sylancl 586 . . . . . . . . . 10 (𝜑 → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴) = {𝐵, 𝐶})
3431, 33eleqtrrd 2844 . . . . . . . . 9 (𝜑𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴))
3534iftrued 4533 . . . . . . . 8 (𝜑 → if(𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴), {𝐴}, ∅) = {𝐴})
3629, 35eqtrid 2789 . . . . . . 7 (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)} = {𝐴})
3736fveq2d 6910 . . . . . 6 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = (♯‘{𝐴}))
38 hashsng 14408 . . . . . . 7 (𝐴𝑋 → (♯‘{𝐴}) = 1)
392, 38syl 17 . . . . . 6 (𝜑 → (♯‘{𝐴}) = 1)
4037, 39eqtrd 2777 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = 1)
4140adantr 480 . . . 4 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = 1)
4226, 41eqtrd 2777 . . 3 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
438, 42mpdan 687 . 2 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
4415, 43eqtrd 2777 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  c0 4333  ifcif 4525  {csn 4626  {cpr 4628  cop 4632  dom cdm 5685  cfv 6561  1c1 11156  chash 14369  Vtxcvtx 29013  iEdgciedg 29014  USGraphcusgr 29166  VtxDegcvtxdg 29483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-xadd 13155  df-fz 13548  df-hash 14370  df-edg 29065  df-upgr 29099  df-umgr 29100  df-uspgr 29167  df-usgr 29168  df-vtxdg 29484
This theorem is referenced by:  1egrvtxdg1r  29528
  Copyright terms: Public domain W3C validator