MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1egrvtxdg1 Structured version   Visualization version   GIF version

Theorem 1egrvtxdg1 27876
Description: The vertex degree of a one-edge graph, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1egrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1egrvtxdg1.a (𝜑𝐴𝑋)
1egrvtxdg1.b (𝜑𝐵𝑉)
1egrvtxdg1.c (𝜑𝐶𝑉)
1egrvtxdg1.n (𝜑𝐵𝐶)
1egrvtxdg1.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
1egrvtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)

Proof of Theorem 1egrvtxdg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 1egrvtxdg1.a . . . 4 (𝜑𝐴𝑋)
3 1egrvtxdg1.b . . . . 5 (𝜑𝐵𝑉)
4 1egrvtxdg1.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
53, 4eleqtrrd 2842 . . . 4 (𝜑𝐵 ∈ (Vtx‘𝐺))
6 1egrvtxdg1.c . . . . 5 (𝜑𝐶𝑉)
76, 4eleqtrrd 2842 . . . 4 (𝜑𝐶 ∈ (Vtx‘𝐺))
8 1egrvtxdg1.i . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
9 1egrvtxdg1.n . . . 4 (𝜑𝐵𝐶)
101, 2, 5, 7, 8, 9usgr1e 27612 . . 3 (𝜑𝐺 ∈ USGraph)
11 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
12 eqid 2738 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
13 eqid 2738 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
141, 11, 12, 13vtxdusgrval 27854 . . 3 ((𝐺 ∈ USGraph ∧ 𝐵 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐵) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}))
1510, 5, 14syl2anc 584 . 2 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}))
16 dmeq 5812 . . . . . . . 8 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
1716adantl 482 . . . . . . 7 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
18 prex 5355 . . . . . . . 8 {𝐵, 𝐶} ∈ V
19 dmsnopg 6116 . . . . . . . 8 ({𝐵, 𝐶} ∈ V → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2018, 19mp1i 13 . . . . . . 7 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom {⟨𝐴, {𝐵, 𝐶}⟩} = {𝐴})
2117, 20eqtrd 2778 . . . . . 6 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → dom (iEdg‘𝐺) = {𝐴})
22 fveq1 6773 . . . . . . . 8 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → ((iEdg‘𝐺)‘𝑥) = ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥))
2322eleq2d 2824 . . . . . . 7 ((iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩} → (𝐵 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)))
2423adantl 482 . . . . . 6 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (𝐵 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)))
2521, 24rabeqbidv 3420 . . . . 5 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)})
2625fveq2d 6778 . . . 4 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}))
27 fveq2 6774 . . . . . . . . . 10 (𝑥 = 𝐴 → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥) = ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴))
2827eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥) ↔ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴)))
2928rabsnif 4659 . . . . . . . 8 {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)} = if(𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴), {𝐴}, ∅)
30 prid1g 4696 . . . . . . . . . . 11 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
313, 30syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ {𝐵, 𝐶})
32 fvsng 7052 . . . . . . . . . . 11 ((𝐴𝑋 ∧ {𝐵, 𝐶} ∈ V) → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴) = {𝐵, 𝐶})
332, 18, 32sylancl 586 . . . . . . . . . 10 (𝜑 → ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴) = {𝐵, 𝐶})
3431, 33eleqtrrd 2842 . . . . . . . . 9 (𝜑𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴))
3534iftrued 4467 . . . . . . . 8 (𝜑 → if(𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝐴), {𝐴}, ∅) = {𝐴})
3629, 35eqtrid 2790 . . . . . . 7 (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)} = {𝐴})
3736fveq2d 6778 . . . . . 6 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = (♯‘{𝐴}))
38 hashsng 14084 . . . . . . 7 (𝐴𝑋 → (♯‘{𝐴}) = 1)
392, 38syl 17 . . . . . 6 (𝜑 → (♯‘{𝐴}) = 1)
4037, 39eqtrd 2778 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = 1)
4140adantr 481 . . . 4 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐵 ∈ ({⟨𝐴, {𝐵, 𝐶}⟩}‘𝑥)}) = 1)
4226, 41eqtrd 2778 . . 3 ((𝜑 ∧ (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
438, 42mpdan 684 . 2 (𝜑 → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐵 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
4415, 43eqtrd 2778 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  c0 4256  ifcif 4459  {csn 4561  {cpr 4563  cop 4567  dom cdm 5589  cfv 6433  1c1 10872  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  USGraphcusgr 27519  VtxDegcvtxdg 27832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-xadd 12849  df-fz 13240  df-hash 14045  df-edg 27418  df-upgr 27452  df-umgr 27453  df-uspgr 27520  df-usgr 27521  df-vtxdg 27833
This theorem is referenced by:  1egrvtxdg1r  27877
  Copyright terms: Public domain W3C validator