| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 1hevtxdg0.i | . . . 4
⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | 
| 2 | 1 | dmeqd 5915 | . . 3
⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, 𝐸〉}) | 
| 3 |  | 1hevtxdg1.e | . . . 4
⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) | 
| 4 |  | dmsnopg 6232 | . . . 4
⊢ (𝐸 ∈ 𝒫 𝑉 → dom {〈𝐴, 𝐸〉} = {𝐴}) | 
| 5 | 3, 4 | syl 17 | . . 3
⊢ (𝜑 → dom {〈𝐴, 𝐸〉} = {𝐴}) | 
| 6 | 2, 5 | eqtrd 2776 | . 2
⊢ (𝜑 → dom (iEdg‘𝐺) = {𝐴}) | 
| 7 |  | 1hevtxdg0.a | . . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑋) | 
| 8 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸)) | 
| 9 | 8 | breq2d 5154 | . . . . . . . 8
⊢ (𝑥 = 𝐸 → (2 ≤ (♯‘𝑥) ↔ 2 ≤
(♯‘𝐸))) | 
| 10 |  | 1hevtxdg0.v | . . . . . . . . . 10
⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | 
| 11 | 10 | pweqd 4616 | . . . . . . . . 9
⊢ (𝜑 → 𝒫 (Vtx‘𝐺) = 𝒫 𝑉) | 
| 12 | 3, 11 | eleqtrrd 2843 | . . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ 𝒫 (Vtx‘𝐺)) | 
| 13 |  | 1hevtxdg1.l | . . . . . . . 8
⊢ (𝜑 → 2 ≤
(♯‘𝐸)) | 
| 14 | 9, 12, 13 | elrabd 3693 | . . . . . . 7
⊢ (𝜑 → 𝐸 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤
(♯‘𝑥)}) | 
| 15 | 7, 14 | fsnd 6890 | . . . . . 6
⊢ (𝜑 → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤
(♯‘𝑥)}) | 
| 16 | 15 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤
(♯‘𝑥)}) | 
| 17 | 1 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | 
| 18 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → dom (iEdg‘𝐺) = {𝐴}) | 
| 19 | 17, 18 | feq12d 6723 | . . . . 5
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤
(♯‘𝑥)} ↔
{〈𝐴, 𝐸〉}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤
(♯‘𝑥)})) | 
| 20 | 16, 19 | mpbird 257 | . . . 4
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤
(♯‘𝑥)}) | 
| 21 |  | 1hevtxdg0.d | . . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑉) | 
| 22 | 21, 10 | eleqtrrd 2843 | . . . . 5
⊢ (𝜑 → 𝐷 ∈ (Vtx‘𝐺)) | 
| 23 | 22 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → 𝐷 ∈ (Vtx‘𝐺)) | 
| 24 |  | eqid 2736 | . . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 25 |  | eqid 2736 | . . . . 5
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) | 
| 26 |  | eqid 2736 | . . . . 5
⊢ dom
(iEdg‘𝐺) = dom
(iEdg‘𝐺) | 
| 27 |  | eqid 2736 | . . . . 5
⊢
(VtxDeg‘𝐺) =
(VtxDeg‘𝐺) | 
| 28 | 24, 25, 26, 27 | vtxdlfgrval 29504 | . . . 4
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤
(♯‘𝑥)} ∧
𝐷 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐷) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})) | 
| 29 | 20, 23, 28 | syl2anc 584 | . . 3
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((VtxDeg‘𝐺)‘𝐷) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})) | 
| 30 |  | rabeq 3450 | . . . . 5
⊢ (dom
(iEdg‘𝐺) = {𝐴} → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) | 
| 31 | 30 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) | 
| 32 | 31 | fveq2d 6909 | . . 3
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})) | 
| 33 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴)) | 
| 34 | 33 | eleq2d 2826 | . . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴))) | 
| 35 | 34 | rabsnif 4722 | . . . . . . 7
⊢ {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = if(𝐷 ∈ ((iEdg‘𝐺)‘𝐴), {𝐴}, ∅) | 
| 36 |  | 1hevtxdg1.n | . . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝐸) | 
| 37 | 1 | fveq1d 6907 | . . . . . . . . . 10
⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({〈𝐴, 𝐸〉}‘𝐴)) | 
| 38 |  | fvsng 7201 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝒫 𝑉) → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) | 
| 39 | 7, 3, 38 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → ({〈𝐴, 𝐸〉}‘𝐴) = 𝐸) | 
| 40 | 37, 39 | eqtrd 2776 | . . . . . . . . 9
⊢ (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸) | 
| 41 | 36, 40 | eleqtrrd 2843 | . . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)) | 
| 42 | 41 | iftrued 4532 | . . . . . . 7
⊢ (𝜑 → if(𝐷 ∈ ((iEdg‘𝐺)‘𝐴), {𝐴}, ∅) = {𝐴}) | 
| 43 | 35, 42 | eqtrid 2788 | . . . . . 6
⊢ (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝐴}) | 
| 44 | 43 | fveq2d 6909 | . . . . 5
⊢ (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝐴})) | 
| 45 |  | hashsng 14409 | . . . . . 6
⊢ (𝐴 ∈ 𝑋 → (♯‘{𝐴}) = 1) | 
| 46 | 7, 45 | syl 17 | . . . . 5
⊢ (𝜑 → (♯‘{𝐴}) = 1) | 
| 47 | 44, 46 | eqtrd 2776 | . . . 4
⊢ (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1) | 
| 48 | 47 | adantr 480 | . . 3
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1) | 
| 49 | 29, 32, 48 | 3eqtrd 2780 | . 2
⊢ ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((VtxDeg‘𝐺)‘𝐷) = 1) | 
| 50 | 6, 49 | mpdan 687 | 1
⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1) |