MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1hevtxdg1 Structured version   Visualization version   GIF version

Theorem 1hevtxdg1 26804
Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 (not being a loop) is 1 if 𝐷 is incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
1hevtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hevtxdg0.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1hevtxdg0.a (𝜑𝐴𝑋)
1hevtxdg0.d (𝜑𝐷𝑉)
1hevtxdg1.e (𝜑𝐸 ∈ 𝒫 𝑉)
1hevtxdg1.n (𝜑𝐷𝐸)
1hevtxdg1.l (𝜑 → 2 ≤ (♯‘𝐸))
Assertion
Ref Expression
1hevtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1)

Proof of Theorem 1hevtxdg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1hevtxdg0.i . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
21dmeqd 5558 . . 3 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, 𝐸⟩})
3 1hevtxdg1.e . . . 4 (𝜑𝐸 ∈ 𝒫 𝑉)
4 dmsnopg 5847 . . . 4 (𝐸 ∈ 𝒫 𝑉 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
53, 4syl 17 . . 3 (𝜑 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
62, 5eqtrd 2861 . 2 (𝜑 → dom (iEdg‘𝐺) = {𝐴})
7 1hevtxdg0.a . . . . . . 7 (𝜑𝐴𝑋)
8 1hevtxdg0.v . . . . . . . . . 10 (𝜑 → (Vtx‘𝐺) = 𝑉)
98pweqd 4383 . . . . . . . . 9 (𝜑 → 𝒫 (Vtx‘𝐺) = 𝒫 𝑉)
103, 9eleqtrrd 2909 . . . . . . . 8 (𝜑𝐸 ∈ 𝒫 (Vtx‘𝐺))
11 1hevtxdg1.l . . . . . . . 8 (𝜑 → 2 ≤ (♯‘𝐸))
12 fveq2 6433 . . . . . . . . . 10 (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸))
1312breq2d 4885 . . . . . . . . 9 (𝑥 = 𝐸 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝐸)))
1413elrab 3585 . . . . . . . 8 (𝐸 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)} ↔ (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝐸)))
1510, 11, 14sylanbrc 580 . . . . . . 7 (𝜑𝐸 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)})
167, 15fsnd 6420 . . . . . 6 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)})
1716adantr 474 . . . . 5 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)})
181adantr 474 . . . . . 6 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
19 simpr 479 . . . . . 6 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → dom (iEdg‘𝐺) = {𝐴})
2018, 19feq12d 6266 . . . . 5 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)} ↔ {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)}))
2117, 20mpbird 249 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)})
22 1hevtxdg0.d . . . . . 6 (𝜑𝐷𝑉)
2322, 8eleqtrrd 2909 . . . . 5 (𝜑𝐷 ∈ (Vtx‘𝐺))
2423adantr 474 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → 𝐷 ∈ (Vtx‘𝐺))
25 eqid 2825 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
26 eqid 2825 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
27 eqid 2825 . . . . 5 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
28 eqid 2825 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
2925, 26, 27, 28vtxdlfgrval 26783 . . . 4 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐷 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐷) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
3021, 24, 29syl2anc 581 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((VtxDeg‘𝐺)‘𝐷) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
31 rabeq 3405 . . . . 5 (dom (iEdg‘𝐺) = {𝐴} → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})
3231adantl 475 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})
3332fveq2d 6437 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
34 fveq2 6433 . . . . . . . . 9 (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴))
3534eleq2d 2892 . . . . . . . 8 (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
3635rabsnif 4476 . . . . . . 7 {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = if(𝐷 ∈ ((iEdg‘𝐺)‘𝐴), {𝐴}, ∅)
37 1hevtxdg1.n . . . . . . . . 9 (𝜑𝐷𝐸)
381fveq1d 6435 . . . . . . . . . 10 (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({⟨𝐴, 𝐸⟩}‘𝐴))
39 fvsng 6698 . . . . . . . . . . 11 ((𝐴𝑋𝐸 ∈ 𝒫 𝑉) → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
407, 3, 39syl2anc 581 . . . . . . . . . 10 (𝜑 → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
4138, 40eqtrd 2861 . . . . . . . . 9 (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸)
4237, 41eleqtrrd 2909 . . . . . . . 8 (𝜑𝐷 ∈ ((iEdg‘𝐺)‘𝐴))
4342iftrued 4314 . . . . . . 7 (𝜑 → if(𝐷 ∈ ((iEdg‘𝐺)‘𝐴), {𝐴}, ∅) = {𝐴})
4436, 43syl5eq 2873 . . . . . 6 (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝐴})
4544fveq2d 6437 . . . . 5 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = (♯‘{𝐴}))
46 hashsng 13449 . . . . . 6 (𝐴𝑋 → (♯‘{𝐴}) = 1)
477, 46syl 17 . . . . 5 (𝜑 → (♯‘{𝐴}) = 1)
4845, 47eqtrd 2861 . . . 4 (𝜑 → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
4948adantr 474 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (♯‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
5030, 33, 493eqtrd 2865 . 2 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((VtxDeg‘𝐺)‘𝐷) = 1)
516, 50mpdan 680 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  {crab 3121  c0 4144  ifcif 4306  𝒫 cpw 4378  {csn 4397  cop 4403   class class class wbr 4873  dom cdm 5342  wf 6119  cfv 6123  1c1 10253  cle 10392  2c2 11406  chash 13410  Vtxcvtx 26294  iEdgciedg 26295  VtxDegcvtxdg 26763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-xnn0 11691  df-z 11705  df-uz 11969  df-xadd 12233  df-fz 12620  df-hash 13411  df-vtxdg 26764
This theorem is referenced by:  1hegrvtxdg1  26805  p1evtxdp1  26812
  Copyright terms: Public domain W3C validator