Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfmpt Structured version   Visualization version   GIF version

Theorem xlimmnfmpt 45839
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfmpt.k 𝑘𝜑
xlimmnfmpt.m (𝜑𝑀 ∈ ℤ)
xlimmnfmpt.z 𝑍 = (ℤ𝑀)
xlimmnfmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
xlimmnfmpt.f 𝐹 = (𝑘𝑍𝐵)
Assertion
Ref Expression
xlimmnfmpt (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
Distinct variable groups:   𝐵,𝑗,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑘)   𝐹(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem xlimmnfmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimmnfmpt.f . . . 4 𝐹 = (𝑘𝑍𝐵)
2 nfmpt1 5225 . . . 4 𝑘(𝑘𝑍𝐵)
31, 2nfcxfr 2897 . . 3 𝑘𝐹
4 xlimmnfmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 xlimmnfmpt.z . . 3 𝑍 = (ℤ𝑀)
6 xlimmnfmpt.k . . . 4 𝑘𝜑
7 xlimmnfmpt.b . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
86, 7, 1fmptdf 7112 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
93, 4, 5, 8xlimmnf 45837 . 2 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦))
10 nfv 1914 . . . . . 6 𝑘 𝑖𝑍
116, 10nfan 1899 . . . . 5 𝑘(𝜑𝑖𝑍)
125uztrn2 12876 . . . . . . . 8 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
1312adantll 714 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
14 simpll 766 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝜑)
1514, 13, 7syl2anc 584 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ*)
161fvmpt2 7002 . . . . . . 7 ((𝑘𝑍𝐵 ∈ ℝ*) → (𝐹𝑘) = 𝐵)
1713, 15, 16syl2anc 584 . . . . . 6 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) = 𝐵)
1817breq1d 5134 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝐹𝑘) ≤ 𝑦𝐵𝑦))
1911, 18ralbida 3257 . . . 4 ((𝜑𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑖)𝐵𝑦))
2019rexbidva 3163 . . 3 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦))
2120ralbidv 3164 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦))
22 breq2 5128 . . . . . 6 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
2322rexralbidv 3211 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑥))
24 fveq2 6881 . . . . . . 7 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2524raleqdv 3309 . . . . . 6 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)𝐵𝑥))
2625cbvrexvw 3225 . . . . 5 (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥)
2723, 26bitrdi 287 . . . 4 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
2827cbvralvw 3224 . . 3 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥)
2928a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
309, 21, 293bitrd 305 1 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3052  wrex 3061   class class class wbr 5124  cmpt 5206  cfv 6536  cr 11133  -∞cmnf 11272  *cxr 11273  cle 11275  cz 12593  cuz 12857  ~~>*clsxlim 45814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-1o 8485  df-2o 8486  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-z 12594  df-uz 12858  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-topgen 17462  df-ordt 17520  df-ps 18581  df-tsr 18582  df-top 22837  df-topon 22854  df-bases 22889  df-lm 23172  df-xlim 45815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator