Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfmpt Structured version   Visualization version   GIF version

Theorem xlimmnfmpt 41666
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfmpt.k 𝑘𝜑
xlimmnfmpt.m (𝜑𝑀 ∈ ℤ)
xlimmnfmpt.z 𝑍 = (ℤ𝑀)
xlimmnfmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
xlimmnfmpt.f 𝐹 = (𝑘𝑍𝐵)
Assertion
Ref Expression
xlimmnfmpt (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
Distinct variable groups:   𝐵,𝑗,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑘)   𝐹(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem xlimmnfmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimmnfmpt.f . . . 4 𝐹 = (𝑘𝑍𝐵)
2 nfmpt1 5058 . . . 4 𝑘(𝑘𝑍𝐵)
31, 2nfcxfr 2947 . . 3 𝑘𝐹
4 xlimmnfmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 xlimmnfmpt.z . . 3 𝑍 = (ℤ𝑀)
6 xlimmnfmpt.k . . . 4 𝑘𝜑
7 xlimmnfmpt.b . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
86, 7, 1fmptdf 6744 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
93, 4, 5, 8xlimmnf 41664 . 2 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦))
10 nfv 1892 . . . . . 6 𝑘 𝑖𝑍
116, 10nfan 1881 . . . . 5 𝑘(𝜑𝑖𝑍)
125uztrn2 12111 . . . . . . . 8 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
1312adantll 710 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
14 simpll 763 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝜑)
1514, 13, 7syl2anc 584 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ*)
161fvmpt2 6645 . . . . . . 7 ((𝑘𝑍𝐵 ∈ ℝ*) → (𝐹𝑘) = 𝐵)
1713, 15, 16syl2anc 584 . . . . . 6 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) = 𝐵)
1817breq1d 4972 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝐹𝑘) ≤ 𝑦𝐵𝑦))
1911, 18ralbida 3194 . . . 4 ((𝜑𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑖)𝐵𝑦))
2019rexbidva 3259 . . 3 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦))
2120ralbidv 3164 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦))
22 breq2 4966 . . . . . 6 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
2322rexralbidv 3264 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑥))
24 fveq2 6538 . . . . . . 7 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2524raleqdv 3375 . . . . . 6 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)𝐵𝑥))
2625cbvrexv 3404 . . . . 5 (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥)
2723, 26syl6bb 288 . . . 4 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
2827cbvralv 3403 . . 3 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥)
2928a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
309, 21, 293bitrd 306 1 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wnf 1765  wcel 2081  wral 3105  wrex 3106   class class class wbr 4962  cmpt 5041  cfv 6225  cr 10382  -∞cmnf 10519  *cxr 10520  cle 10522  cz 11829  cuz 12093  ~~>*clsxlim 41641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-z 11830  df-uz 12094  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-topgen 16546  df-ordt 16603  df-ps 17639  df-tsr 17640  df-top 21186  df-topon 21203  df-bases 21238  df-lm 21521  df-xlim 41642
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator