Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfmpt Structured version   Visualization version   GIF version

Theorem xlimmnfmpt 45889
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfmpt.k 𝑘𝜑
xlimmnfmpt.m (𝜑𝑀 ∈ ℤ)
xlimmnfmpt.z 𝑍 = (ℤ𝑀)
xlimmnfmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
xlimmnfmpt.f 𝐹 = (𝑘𝑍𝐵)
Assertion
Ref Expression
xlimmnfmpt (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
Distinct variable groups:   𝐵,𝑗,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑘)   𝐹(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem xlimmnfmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimmnfmpt.f . . . 4 𝐹 = (𝑘𝑍𝐵)
2 nfmpt1 5188 . . . 4 𝑘(𝑘𝑍𝐵)
31, 2nfcxfr 2892 . . 3 𝑘𝐹
4 xlimmnfmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 xlimmnfmpt.z . . 3 𝑍 = (ℤ𝑀)
6 xlimmnfmpt.k . . . 4 𝑘𝜑
7 xlimmnfmpt.b . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
86, 7, 1fmptdf 7050 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
93, 4, 5, 8xlimmnf 45887 . 2 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦))
10 nfv 1915 . . . . . 6 𝑘 𝑖𝑍
116, 10nfan 1900 . . . . 5 𝑘(𝜑𝑖𝑍)
125uztrn2 12751 . . . . . . . 8 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
1312adantll 714 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
14 simpll 766 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝜑)
1514, 13, 7syl2anc 584 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ*)
161fvmpt2 6940 . . . . . . 7 ((𝑘𝑍𝐵 ∈ ℝ*) → (𝐹𝑘) = 𝐵)
1713, 15, 16syl2anc 584 . . . . . 6 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) = 𝐵)
1817breq1d 5099 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝐹𝑘) ≤ 𝑦𝐵𝑦))
1911, 18ralbida 3243 . . . 4 ((𝜑𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑖)𝐵𝑦))
2019rexbidva 3154 . . 3 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦))
2120ralbidv 3155 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦))
22 breq2 5093 . . . . . 6 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
2322rexralbidv 3198 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑥))
24 fveq2 6822 . . . . . . 7 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2524raleqdv 3292 . . . . . 6 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)𝐵𝑥))
2625cbvrexvw 3211 . . . . 5 (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥)
2723, 26bitrdi 287 . . . 4 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
2827cbvralvw 3210 . . 3 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥)
2928a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
309, 21, 293bitrd 305 1 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wral 3047  wrex 3056   class class class wbr 5089  cmpt 5170  cfv 6481  cr 11005  -∞cmnf 11144  *cxr 11145  cle 11147  cz 12468  cuz 12732  ~~>*clsxlim 45864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-z 12469  df-uz 12733  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-top 22809  df-topon 22826  df-bases 22861  df-lm 23144  df-xlim 45865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator