| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimmnfmpt | Structured version Visualization version GIF version | ||
| Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimmnfmpt.k | ⊢ Ⅎ𝑘𝜑 |
| xlimmnfmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimmnfmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimmnfmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
| xlimmnfmpt.f | ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| xlimmnfmpt | ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimmnfmpt.f | . . . 4 ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) | |
| 2 | nfmpt1 5225 | . . . 4 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ 𝐵) | |
| 3 | 1, 2 | nfcxfr 2897 | . . 3 ⊢ Ⅎ𝑘𝐹 |
| 4 | xlimmnfmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | xlimmnfmpt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | xlimmnfmpt.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 7 | xlimmnfmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
| 8 | 6, 7, 1 | fmptdf 7112 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 9 | 3, 4, 5, 8 | xlimmnf 45837 | . 2 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)(𝐹‘𝑘) ≤ 𝑦)) |
| 10 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑘 𝑖 ∈ 𝑍 | |
| 11 | 6, 10 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑖 ∈ 𝑍) |
| 12 | 5 | uztrn2 12876 | . . . . . . . 8 ⊢ ((𝑖 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑘 ∈ 𝑍) |
| 13 | 12 | adantll 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑘 ∈ 𝑍) |
| 14 | simpll 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝜑) | |
| 15 | 14, 13, 7 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝐵 ∈ ℝ*) |
| 16 | 1 | fvmpt2 7002 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝐵 ∈ ℝ*) → (𝐹‘𝑘) = 𝐵) |
| 17 | 13, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑘) = 𝐵) |
| 18 | 17 | breq1d 5134 | . . . . 5 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → ((𝐹‘𝑘) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) |
| 19 | 11, 18 | ralbida 3257 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑖)(𝐹‘𝑘) ≤ 𝑦 ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
| 20 | 19 | rexbidva 3163 | . . 3 ⊢ (𝜑 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)(𝐹‘𝑘) ≤ 𝑦 ↔ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
| 21 | 20 | ralbidv 3164 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)(𝐹‘𝑘) ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
| 22 | breq2 5128 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑥)) | |
| 23 | 22 | rexralbidv 3211 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 ↔ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥)) |
| 24 | fveq2 6881 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
| 25 | 24 | raleqdv 3309 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) |
| 26 | 25 | cbvrexvw 3225 | . . . . 5 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥) |
| 27 | 23, 26 | bitrdi 287 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) |
| 28 | 27 | cbvralvw 3224 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥) |
| 29 | 28 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) |
| 30 | 9, 21, 29 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 ℝcr 11133 -∞cmnf 11272 ℝ*cxr 11273 ≤ cle 11275 ℤcz 12593 ℤ≥cuz 12857 ~~>*clsxlim 45814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-1o 8485 df-2o 8486 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-z 12594 df-uz 12858 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-topgen 17462 df-ordt 17520 df-ps 18581 df-tsr 18582 df-top 22837 df-topon 22854 df-bases 22889 df-lm 23172 df-xlim 45815 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |