Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimmnfmpt | Structured version Visualization version GIF version |
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimmnfmpt.k | ⊢ Ⅎ𝑘𝜑 |
xlimmnfmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimmnfmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimmnfmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
xlimmnfmpt.f | ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) |
Ref | Expression |
---|---|
xlimmnfmpt | ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimmnfmpt.f | . . . 4 ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) | |
2 | nfmpt1 5153 | . . . 4 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ 𝐵) | |
3 | 1, 2 | nfcxfr 2902 | . . 3 ⊢ Ⅎ𝑘𝐹 |
4 | xlimmnfmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | xlimmnfmpt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | xlimmnfmpt.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
7 | xlimmnfmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
8 | 6, 7, 1 | fmptdf 6934 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
9 | 3, 4, 5, 8 | xlimmnf 43057 | . 2 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)(𝐹‘𝑘) ≤ 𝑦)) |
10 | nfv 1922 | . . . . . 6 ⊢ Ⅎ𝑘 𝑖 ∈ 𝑍 | |
11 | 6, 10 | nfan 1907 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑖 ∈ 𝑍) |
12 | 5 | uztrn2 12457 | . . . . . . . 8 ⊢ ((𝑖 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑘 ∈ 𝑍) |
13 | 12 | adantll 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑘 ∈ 𝑍) |
14 | simpll 767 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝜑) | |
15 | 14, 13, 7 | syl2anc 587 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝐵 ∈ ℝ*) |
16 | 1 | fvmpt2 6829 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝐵 ∈ ℝ*) → (𝐹‘𝑘) = 𝐵) |
17 | 13, 15, 16 | syl2anc 587 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑘) = 𝐵) |
18 | 17 | breq1d 5063 | . . . . 5 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → ((𝐹‘𝑘) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) |
19 | 11, 18 | ralbida 3153 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑖)(𝐹‘𝑘) ≤ 𝑦 ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
20 | 19 | rexbidva 3215 | . . 3 ⊢ (𝜑 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)(𝐹‘𝑘) ≤ 𝑦 ↔ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
21 | 20 | ralbidv 3118 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)(𝐹‘𝑘) ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
22 | breq2 5057 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑥)) | |
23 | 22 | rexralbidv 3220 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 ↔ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥)) |
24 | fveq2 6717 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
25 | 24 | raleqdv 3325 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) |
26 | 25 | cbvrexvw 3359 | . . . . 5 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥) |
27 | 23, 26 | bitrdi 290 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) |
28 | 27 | cbvralvw 3358 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥) |
29 | 28 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) |
30 | 9, 21, 29 | 3bitrd 308 | 1 ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 Ⅎwnf 1791 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 class class class wbr 5053 ↦ cmpt 5135 ‘cfv 6380 ℝcr 10728 -∞cmnf 10865 ℝ*cxr 10866 ≤ cle 10868 ℤcz 12176 ℤ≥cuz 12438 ~~>*clsxlim 43034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-1o 8202 df-er 8391 df-pm 8511 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fi 9027 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-z 12177 df-uz 12439 df-ioo 12939 df-ioc 12940 df-ico 12941 df-icc 12942 df-topgen 16948 df-ordt 17006 df-ps 18072 df-tsr 18073 df-top 21791 df-topon 21808 df-bases 21843 df-lm 22126 df-xlim 43035 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |