Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim2f2 Structured version   Visualization version   GIF version

Theorem clim2f2 45626
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 15527. Similar to clim2 15537, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
clim2f2.p 𝑘𝜑
clim2f2.k 𝑘𝐹
clim2f2.z 𝑍 = (ℤ𝑀)
clim2f2.m (𝜑𝑀 ∈ ℤ)
clim2f2.f (𝜑𝐹𝑉)
clim2f2.b ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
Assertion
Ref Expression
clim2f2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑗,𝐹,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘   𝜑,𝑗,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)   𝑍(𝑥)

Proof of Theorem clim2f2
StepHypRef Expression
1 clim2f2.p . . 3 𝑘𝜑
2 clim2f2.k . . 3 𝑘𝐹
3 clim2f2.f . . 3 (𝜑𝐹𝑉)
4 eqidd 2736 . . 3 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
51, 2, 3, 4climf2 45622 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
6 nfv 1912 . . . . . . . 8 𝑘 𝑗𝑍
71, 6nfan 1897 . . . . . . 7 𝑘(𝜑𝑗𝑍)
8 clim2f2.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
98uztrn2 12895 . . . . . . . . 9 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
10 clim2f2.b . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
1110eleq1d 2824 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1210fvoveq1d 7453 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(𝐵𝐴)))
1312breq1d 5158 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑥))
1411, 13anbi12d 632 . . . . . . . . 9 ((𝜑𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
159, 14sylan2 593 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1615anassrs 467 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
177, 16ralbida 3268 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1817rexbidva 3175 . . . . 5 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
19 clim2f2.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
208rexuz3 15384 . . . . . 6 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2119, 20syl 17 . . . . 5 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2218, 21bitr3d 281 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2322ralbidv 3176 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2423anbi2d 630 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
255, 24bitr4d 282 1 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888  wral 3059  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151   < clt 11293  cmin 11490  cz 12611  cuz 12876  +crp 13032  abscabs 15270  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-neg 11493  df-z 12612  df-uz 12877  df-clim 15521
This theorem is referenced by:  climd  45628  clim2d  45629
  Copyright terms: Public domain W3C validator