Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupub Structured version   Visualization version   GIF version

Theorem limsupub 41969
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupub.j 𝑗𝜑
limsupub.e 𝑗𝐹
limsupub.a (𝜑𝐴 ⊆ ℝ)
limsupub.f (𝜑𝐹:𝐴⟶ℝ*)
limsupub.n (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupub (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem limsupub
StepHypRef Expression
1 limsupub.e . . . . 5 𝑗𝐹
2 limsupub.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
32adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝐴 ⊆ ℝ)
4 limsupub.f . . . . . 6 (𝜑𝐹:𝐴⟶ℝ*)
54adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝐹:𝐴⟶ℝ*)
6 limsupub.j . . . . . . . . . 10 𝑗𝜑
7 nfv 1908 . . . . . . . . . 10 𝑗 𝑥 ∈ ℝ
86, 7nfan 1893 . . . . . . . . 9 𝑗(𝜑𝑥 ∈ ℝ)
9 simprl 769 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝑘𝑗)
10 simpllr 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ∈ ℝ)
11 rexr 10679 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1210, 11syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ∈ ℝ*)
134ffvelrnda 6844 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1413ad4ant13 749 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
15 simpr 487 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 < (𝐹𝑗))
1612, 14, 15xrltled 12535 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
1716adantrl 714 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
189, 17jca 514 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1918ex 415 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗𝑥 < (𝐹𝑗)) → (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2019ex 415 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑥 < (𝐹𝑗)) → (𝑘𝑗𝑥 ≤ (𝐹𝑗)))))
218, 20reximdai 3309 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2221ralimdv 3176 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2322ralimdva 3175 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2423imp 409 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
251, 3, 5, 24limsuppnfd 41967 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → (lim sup‘𝐹) = +∞)
26 limsupub.n . . . . . 6 (𝜑 → (lim sup‘𝐹) ≠ +∞)
2726neneqd 3019 . . . . 5 (𝜑 → ¬ (lim sup‘𝐹) = +∞)
2827adantr 483 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → ¬ (lim sup‘𝐹) = +∞)
2925, 28pm2.65da 815 . . 3 (𝜑 → ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
30 imnan 402 . . . . . . . . 9 ((𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 < (𝐹𝑗)))
3130ralbii 3163 . . . . . . . 8 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 < (𝐹𝑗)))
32 ralnex 3234 . . . . . . . 8 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3331, 32bitri 277 . . . . . . 7 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3433rexbii 3245 . . . . . 6 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
35 rexnal 3236 . . . . . 6 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3634, 35bitri 277 . . . . 5 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3736rexbii 3245 . . . 4 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
38 rexnal 3236 . . . 4 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3937, 38bitri 277 . . 3 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
4029, 39sylibr 236 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)))
41 nfv 1908 . . . . . 6 𝑗 𝑘 ∈ ℝ
428, 41nfan 1893 . . . . 5 𝑗((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
4313ad4ant14 750 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
44 simpllr 774 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
4544rexrd 10683 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
4643, 45xrlenltd 10699 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑗)))
4746imbi2d 343 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
4842, 47ralbida 3228 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
4948rexbidva 3294 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
5049rexbidva 3294 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
5140, 50mpbird 259 1 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1530  wnf 1777  wcel 2107  wnfc 2959  wne 3014  wral 3136  wrex 3137  wss 3934   class class class wbr 5057  wf 6344  cfv 6348  cr 10528  +∞cpnf 10664  *cxr 10666   < clt 10667  cle 10668  lim supclsp 14819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-ico 12736  df-limsup 14820
This theorem is referenced by:  limsupubuz  41978  limsupub2  42077
  Copyright terms: Public domain W3C validator