Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupub Structured version   Visualization version   GIF version

Theorem limsupub 42346
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupub.j 𝑗𝜑
limsupub.e 𝑗𝐹
limsupub.a (𝜑𝐴 ⊆ ℝ)
limsupub.f (𝜑𝐹:𝐴⟶ℝ*)
limsupub.n (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupub (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem limsupub
StepHypRef Expression
1 limsupub.e . . . . 5 𝑗𝐹
2 limsupub.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
32adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝐴 ⊆ ℝ)
4 limsupub.f . . . . . 6 (𝜑𝐹:𝐴⟶ℝ*)
54adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝐹:𝐴⟶ℝ*)
6 limsupub.j . . . . . . . . . 10 𝑗𝜑
7 nfv 1915 . . . . . . . . . 10 𝑗 𝑥 ∈ ℝ
86, 7nfan 1900 . . . . . . . . 9 𝑗(𝜑𝑥 ∈ ℝ)
9 simprl 770 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝑘𝑗)
10 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ∈ ℝ)
11 rexr 10676 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1210, 11syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ∈ ℝ*)
134ffvelrnda 6828 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1413ad4ant13 750 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
15 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 < (𝐹𝑗))
1612, 14, 15xrltled 12531 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
1716adantrl 715 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
189, 17jca 515 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1918ex 416 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗𝑥 < (𝐹𝑗)) → (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2019ex 416 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑥 < (𝐹𝑗)) → (𝑘𝑗𝑥 ≤ (𝐹𝑗)))))
218, 20reximdai 3270 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2221ralimdv 3145 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2322ralimdva 3144 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2423imp 410 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
251, 3, 5, 24limsuppnfd 42344 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → (lim sup‘𝐹) = +∞)
26 limsupub.n . . . . . 6 (𝜑 → (lim sup‘𝐹) ≠ +∞)
2726neneqd 2992 . . . . 5 (𝜑 → ¬ (lim sup‘𝐹) = +∞)
2827adantr 484 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → ¬ (lim sup‘𝐹) = +∞)
2925, 28pm2.65da 816 . . 3 (𝜑 → ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
30 imnan 403 . . . . . . . . 9 ((𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 < (𝐹𝑗)))
3130ralbii 3133 . . . . . . . 8 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 < (𝐹𝑗)))
32 ralnex 3199 . . . . . . . 8 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3331, 32bitri 278 . . . . . . 7 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3433rexbii 3210 . . . . . 6 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
35 rexnal 3201 . . . . . 6 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3634, 35bitri 278 . . . . 5 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3736rexbii 3210 . . . 4 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
38 rexnal 3201 . . . 4 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3937, 38bitri 278 . . 3 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
4029, 39sylibr 237 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)))
41 nfv 1915 . . . . . 6 𝑗 𝑘 ∈ ℝ
428, 41nfan 1900 . . . . 5 𝑗((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
4313ad4ant14 751 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
44 simpllr 775 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
4544rexrd 10680 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
4643, 45xrlenltd 10696 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑗)))
4746imbi2d 344 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
4842, 47ralbida 3194 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
4948rexbidva 3255 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
5049rexbidva 3255 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
5140, 50mpbird 260 1 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936  wne 2987  wral 3106  wrex 3107  wss 3881   class class class wbr 5030  wf 6320  cfv 6324  cr 10525  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  lim supclsp 14819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-ico 12732  df-limsup 14820
This theorem is referenced by:  limsupubuz  42355  limsupub2  42454
  Copyright terms: Public domain W3C validator