Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupub Structured version   Visualization version   GIF version

Theorem limsupub 45702
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupub.j 𝑗𝜑
limsupub.e 𝑗𝐹
limsupub.a (𝜑𝐴 ⊆ ℝ)
limsupub.f (𝜑𝐹:𝐴⟶ℝ*)
limsupub.n (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupub (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem limsupub
StepHypRef Expression
1 limsupub.e . . . . 5 𝑗𝐹
2 limsupub.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
32adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝐴 ⊆ ℝ)
4 limsupub.f . . . . . 6 (𝜑𝐹:𝐴⟶ℝ*)
54adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝐹:𝐴⟶ℝ*)
6 limsupub.j . . . . . . . . . 10 𝑗𝜑
7 nfv 1914 . . . . . . . . . 10 𝑗 𝑥 ∈ ℝ
86, 7nfan 1899 . . . . . . . . 9 𝑗(𝜑𝑥 ∈ ℝ)
9 simprl 770 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝑘𝑗)
10 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ∈ ℝ)
11 rexr 11220 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1210, 11syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ∈ ℝ*)
134ffvelcdmda 7056 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1413ad4ant13 751 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
15 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 < (𝐹𝑗))
1612, 14, 15xrltled 13110 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
1716adantrl 716 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
189, 17jca 511 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1918ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗𝑥 < (𝐹𝑗)) → (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2019ex 412 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑥 < (𝐹𝑗)) → (𝑘𝑗𝑥 ≤ (𝐹𝑗)))))
218, 20reximdai 3239 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2221ralimdv 3147 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2322ralimdva 3145 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2423imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
251, 3, 5, 24limsuppnfd 45700 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → (lim sup‘𝐹) = +∞)
26 limsupub.n . . . . . 6 (𝜑 → (lim sup‘𝐹) ≠ +∞)
2726neneqd 2930 . . . . 5 (𝜑 → ¬ (lim sup‘𝐹) = +∞)
2827adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → ¬ (lim sup‘𝐹) = +∞)
2925, 28pm2.65da 816 . . 3 (𝜑 → ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
30 imnan 399 . . . . . . . . 9 ((𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 < (𝐹𝑗)))
3130ralbii 3075 . . . . . . . 8 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 < (𝐹𝑗)))
32 ralnex 3055 . . . . . . . 8 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3331, 32bitri 275 . . . . . . 7 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3433rexbii 3076 . . . . . 6 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
35 rexnal 3082 . . . . . 6 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3634, 35bitri 275 . . . . 5 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3736rexbii 3076 . . . 4 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
38 rexnal 3082 . . . 4 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3937, 38bitri 275 . . 3 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
4029, 39sylibr 234 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)))
41 nfv 1914 . . . . . 6 𝑗 𝑘 ∈ ℝ
428, 41nfan 1899 . . . . 5 𝑗((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
4313ad4ant14 752 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
44 simpllr 775 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
4544rexrd 11224 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
4643, 45xrlenltd 11240 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑗)))
4746imbi2d 340 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
4842, 47ralbida 3248 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
4948rexbidva 3155 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
5049rexbidva 3155 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
5140, 50mpbird 257 1 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  wf 6507  cfv 6511  cr 11067  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  lim supclsp 15436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-ico 13312  df-limsup 15437
This theorem is referenced by:  limsupubuz  45711  limsupub2  45810
  Copyright terms: Public domain W3C validator