Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupub Structured version   Visualization version   GIF version

Theorem limsupub 45742
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupub.j 𝑗𝜑
limsupub.e 𝑗𝐹
limsupub.a (𝜑𝐴 ⊆ ℝ)
limsupub.f (𝜑𝐹:𝐴⟶ℝ*)
limsupub.n (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupub (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem limsupub
StepHypRef Expression
1 limsupub.e . . . . 5 𝑗𝐹
2 limsupub.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
32adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝐴 ⊆ ℝ)
4 limsupub.f . . . . . 6 (𝜑𝐹:𝐴⟶ℝ*)
54adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝐹:𝐴⟶ℝ*)
6 limsupub.j . . . . . . . . . 10 𝑗𝜑
7 nfv 1915 . . . . . . . . . 10 𝑗 𝑥 ∈ ℝ
86, 7nfan 1900 . . . . . . . . 9 𝑗(𝜑𝑥 ∈ ℝ)
9 simprl 770 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝑘𝑗)
10 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ∈ ℝ)
11 rexr 11153 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1210, 11syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ∈ ℝ*)
134ffvelcdmda 7012 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1413ad4ant13 751 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
15 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 < (𝐹𝑗))
1612, 14, 15xrltled 13044 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
1716adantrl 716 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
189, 17jca 511 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1918ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗𝑥 < (𝐹𝑗)) → (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2019ex 412 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑥 < (𝐹𝑗)) → (𝑘𝑗𝑥 ≤ (𝐹𝑗)))))
218, 20reximdai 3234 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2221ralimdv 3146 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2322ralimdva 3144 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2423imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
251, 3, 5, 24limsuppnfd 45740 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → (lim sup‘𝐹) = +∞)
26 limsupub.n . . . . . 6 (𝜑 → (lim sup‘𝐹) ≠ +∞)
2726neneqd 2933 . . . . 5 (𝜑 → ¬ (lim sup‘𝐹) = +∞)
2827adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → ¬ (lim sup‘𝐹) = +∞)
2925, 28pm2.65da 816 . . 3 (𝜑 → ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
30 imnan 399 . . . . . . . . 9 ((𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 < (𝐹𝑗)))
3130ralbii 3078 . . . . . . . 8 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 < (𝐹𝑗)))
32 ralnex 3058 . . . . . . . 8 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3331, 32bitri 275 . . . . . . 7 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3433rexbii 3079 . . . . . 6 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
35 rexnal 3084 . . . . . 6 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3634, 35bitri 275 . . . . 5 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3736rexbii 3079 . . . 4 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
38 rexnal 3084 . . . 4 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3937, 38bitri 275 . . 3 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
4029, 39sylibr 234 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)))
41 nfv 1915 . . . . . 6 𝑗 𝑘 ∈ ℝ
428, 41nfan 1900 . . . . 5 𝑗((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
4313ad4ant14 752 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
44 simpllr 775 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
4544rexrd 11157 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
4643, 45xrlenltd 11173 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑗)))
4746imbi2d 340 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
4842, 47ralbida 3243 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
4948rexbidva 3154 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
5049rexbidva 3154 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
5140, 50mpbird 257 1 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879  wne 2928  wral 3047  wrex 3056  wss 3897   class class class wbr 5086  wf 6472  cfv 6476  cr 11000  +∞cpnf 11138  *cxr 11140   < clt 11141  cle 11142  lim supclsp 15372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-ico 13246  df-limsup 15373
This theorem is referenced by:  limsupubuz  45751  limsupub2  45850
  Copyright terms: Public domain W3C validator