Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupub Structured version   Visualization version   GIF version

Theorem limsupub 45005
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupub.j 𝑗𝜑
limsupub.e 𝑗𝐹
limsupub.a (𝜑𝐴 ⊆ ℝ)
limsupub.f (𝜑𝐹:𝐴⟶ℝ*)
limsupub.n (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupub (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem limsupub
StepHypRef Expression
1 limsupub.e . . . . 5 𝑗𝐹
2 limsupub.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
32adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝐴 ⊆ ℝ)
4 limsupub.f . . . . . 6 (𝜑𝐹:𝐴⟶ℝ*)
54adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝐹:𝐴⟶ℝ*)
6 limsupub.j . . . . . . . . . 10 𝑗𝜑
7 nfv 1910 . . . . . . . . . 10 𝑗 𝑥 ∈ ℝ
86, 7nfan 1895 . . . . . . . . 9 𝑗(𝜑𝑥 ∈ ℝ)
9 simprl 770 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝑘𝑗)
10 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ∈ ℝ)
11 rexr 11276 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1210, 11syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ∈ ℝ*)
134ffvelcdmda 7088 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1413ad4ant13 750 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
15 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 < (𝐹𝑗))
1612, 14, 15xrltled 13147 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑥 < (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
1716adantrl 715 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
189, 17jca 511 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗𝑥 < (𝐹𝑗))) → (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1918ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗𝑥 < (𝐹𝑗)) → (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2019ex 412 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑥 < (𝐹𝑗)) → (𝑘𝑗𝑥 ≤ (𝐹𝑗)))))
218, 20reximdai 3253 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2221ralimdv 3164 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2322ralimdva 3162 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
2423imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
251, 3, 5, 24limsuppnfd 45003 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → (lim sup‘𝐹) = +∞)
26 limsupub.n . . . . . 6 (𝜑 → (lim sup‘𝐹) ≠ +∞)
2726neneqd 2940 . . . . 5 (𝜑 → ¬ (lim sup‘𝐹) = +∞)
2827adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))) → ¬ (lim sup‘𝐹) = +∞)
2925, 28pm2.65da 816 . . 3 (𝜑 → ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
30 imnan 399 . . . . . . . . 9 ((𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 < (𝐹𝑗)))
3130ralbii 3088 . . . . . . . 8 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 < (𝐹𝑗)))
32 ralnex 3067 . . . . . . . 8 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3331, 32bitri 275 . . . . . . 7 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3433rexbii 3089 . . . . . 6 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
35 rexnal 3095 . . . . . 6 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3634, 35bitri 275 . . . . 5 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3736rexbii 3089 . . . 4 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
38 rexnal 3095 . . . 4 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
3937, 38bitri 275 . . 3 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)))
4029, 39sylibr 233 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗)))
41 nfv 1910 . . . . . 6 𝑗 𝑘 ∈ ℝ
428, 41nfan 1895 . . . . 5 𝑗((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
4313ad4ant14 751 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
44 simpllr 775 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
4544rexrd 11280 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
4643, 45xrlenltd 11296 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑗)))
4746imbi2d 340 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
4842, 47ralbida 3262 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
4948rexbidva 3171 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
5049rexbidva 3171 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 < (𝐹𝑗))))
5140, 50mpbird 257 1 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wnf 1778  wcel 2099  wnfc 2878  wne 2935  wral 3056  wrex 3065  wss 3944   class class class wbr 5142  wf 6538  cfv 6542  cr 11123  +∞cpnf 11261  *cxr 11263   < clt 11264  cle 11265  lim supclsp 15432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9451  df-inf 9452  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-ico 13348  df-limsup 15433
This theorem is referenced by:  limsupubuz  45014  limsupub2  45113
  Copyright terms: Public domain W3C validator