Proof of Theorem limsupub
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | limsupub.e | . . . . 5
⊢
Ⅎ𝑗𝐹 | 
| 2 |  | limsupub.a | . . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| 3 | 2 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) → 𝐴 ⊆ ℝ) | 
| 4 |  | limsupub.f | . . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | 
| 5 | 4 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) → 𝐹:𝐴⟶ℝ*) | 
| 6 |  | limsupub.j | . . . . . . . . . 10
⊢
Ⅎ𝑗𝜑 | 
| 7 |  | nfv 1913 | . . . . . . . . . 10
⊢
Ⅎ𝑗 𝑥 ∈ ℝ | 
| 8 | 6, 7 | nfan 1898 | . . . . . . . . 9
⊢
Ⅎ𝑗(𝜑 ∧ 𝑥 ∈ ℝ) | 
| 9 |  | simprl 770 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) → 𝑘 ≤ 𝑗) | 
| 10 |  | simpllr 775 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 < (𝐹‘𝑗)) → 𝑥 ∈ ℝ) | 
| 11 |  | rexr 11308 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) | 
| 12 | 10, 11 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 < (𝐹‘𝑗)) → 𝑥 ∈ ℝ*) | 
| 13 | 4 | ffvelcdmda 7103 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) | 
| 14 | 13 | ad4ant13 751 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 < (𝐹‘𝑗)) → (𝐹‘𝑗) ∈
ℝ*) | 
| 15 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 < (𝐹‘𝑗)) → 𝑥 < (𝐹‘𝑗)) | 
| 16 | 12, 14, 15 | xrltled 13193 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 < (𝐹‘𝑗)) → 𝑥 ≤ (𝐹‘𝑗)) | 
| 17 | 16 | adantrl 716 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) → 𝑥 ≤ (𝐹‘𝑗)) | 
| 18 | 9, 17 | jca 511 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) → (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) | 
| 19 | 18 | ex 412 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) → (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) | 
| 20 | 19 | ex 412 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑗 ∈ 𝐴 → ((𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) → (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))))) | 
| 21 | 8, 20 | reximdai 3260 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) → ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) | 
| 22 | 21 | ralimdv 3168 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) | 
| 23 | 22 | ralimdva 3166 | . . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) | 
| 24 | 23 | imp 406 | . . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) | 
| 25 | 1, 3, 5, 24 | limsuppnfd 45722 | . . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) → (lim sup‘𝐹) = +∞) | 
| 26 |  | limsupub.n | . . . . . 6
⊢ (𝜑 → (lim sup‘𝐹) ≠
+∞) | 
| 27 | 26 | neneqd 2944 | . . . . 5
⊢ (𝜑 → ¬ (lim sup‘𝐹) = +∞) | 
| 28 | 27 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) → ¬ (lim sup‘𝐹) = +∞) | 
| 29 | 25, 28 | pm2.65da 816 | . . 3
⊢ (𝜑 → ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 30 |  | imnan 399 | . . . . . . . . 9
⊢ ((𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)) ↔ ¬ (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 31 | 30 | ralbii 3092 | . . . . . . . 8
⊢
(∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)) ↔ ∀𝑗 ∈ 𝐴 ¬ (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 32 |  | ralnex 3071 | . . . . . . . 8
⊢
(∀𝑗 ∈
𝐴 ¬ (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ↔ ¬ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 33 | 31, 32 | bitri 275 | . . . . . . 7
⊢
(∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)) ↔ ¬ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 34 | 33 | rexbii 3093 | . . . . . 6
⊢
(∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 35 |  | rexnal 3099 | . . . . . 6
⊢
(∃𝑘 ∈
ℝ ¬ ∃𝑗
∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 36 | 34, 35 | bitri 275 | . . . . 5
⊢
(∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 37 | 36 | rexbii 3093 | . . . 4
⊢
(∃𝑥 ∈
ℝ ∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 38 |  | rexnal 3099 | . . . 4
⊢
(∃𝑥 ∈
ℝ ¬ ∀𝑘
∈ ℝ ∃𝑗
∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 39 | 37, 38 | bitri 275 | . . 3
⊢
(∃𝑥 ∈
ℝ ∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗))) | 
| 40 | 29, 39 | sylibr 234 | . 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗))) | 
| 41 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑗 𝑘 ∈ ℝ | 
| 42 | 8, 41 | nfan 1898 | . . . . 5
⊢
Ⅎ𝑗((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) | 
| 43 | 13 | ad4ant14 752 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) | 
| 44 |  | simpllr 775 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → 𝑥 ∈ ℝ) | 
| 45 | 44 | rexrd 11312 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → 𝑥 ∈ ℝ*) | 
| 46 | 43, 45 | xrlenltd 11328 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑗) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹‘𝑗))) | 
| 47 | 46 | imbi2d 340 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)))) | 
| 48 | 42, 47 | ralbida 3269 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)))) | 
| 49 | 48 | rexbidva 3176 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)))) | 
| 50 | 49 | rexbidva 3176 | . 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 < (𝐹‘𝑗)))) | 
| 51 | 40, 50 | mpbird 257 | 1
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |