| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupubuzmpt | Structured version Visualization version GIF version | ||
| Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupubuzmpt.j | ⊢ Ⅎ𝑗𝜑 |
| limsupubuzmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| limsupubuzmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| limsupubuzmpt.n | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ≠ +∞) |
| Ref | Expression |
|---|---|
| limsupubuzmpt | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5191 | . . . 4 ⊢ Ⅎ𝑗(𝑗 ∈ 𝑍 ↦ 𝐵) | |
| 2 | limsupubuzmpt.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | limsupubuzmpt.j | . . . . 5 ⊢ Ⅎ𝑗𝜑 | |
| 4 | limsupubuzmpt.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ 𝐵) = (𝑗 ∈ 𝑍 ↦ 𝐵) | |
| 6 | 3, 4, 5 | fmptdf 7051 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
| 7 | limsupubuzmpt.n | . . . 4 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ≠ +∞) | |
| 8 | 1, 2, 6, 7 | limsupubuz 45694 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦) |
| 9 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵) = (𝑗 ∈ 𝑍 ↦ 𝐵)) |
| 10 | 9, 4 | fvmpt2d 6943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) = 𝐵) |
| 11 | 10 | breq1d 5102 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) |
| 12 | 3, 11 | ralbida 3240 | . . . 4 ⊢ (𝜑 → (∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦)) |
| 13 | 12 | rexbidv 3153 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦)) |
| 14 | 8, 13 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦) |
| 15 | breq2 5096 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑥)) | |
| 16 | 15 | ralbidv 3152 | . . 3 ⊢ (𝑦 = 𝑥 → (∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) |
| 17 | 16 | cbvrexvw 3208 | . 2 ⊢ (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
| 18 | 14, 17 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 ℝcr 11008 +∞cpnf 11146 ≤ cle 11150 ℤ≥cuz 12735 lim supclsp 15377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-ico 13254 df-fz 13411 df-fl 13696 df-ceil 13697 df-limsup 15378 |
| This theorem is referenced by: smflimsuplem2 46802 smflimsuplem5 46805 |
| Copyright terms: Public domain | W3C validator |