Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuzmpt Structured version   Visualization version   GIF version

Theorem limsupubuzmpt 43260
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuzmpt.j 𝑗𝜑
limsupubuzmpt.z 𝑍 = (ℤ𝑀)
limsupubuzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
limsupubuzmpt.n (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)
Assertion
Ref Expression
limsupubuzmpt (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Distinct variable groups:   𝑥,𝐵   𝑗,𝑀   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐵(𝑗)   𝑀(𝑥)

Proof of Theorem limsupubuzmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5182 . . . 4 𝑗(𝑗𝑍𝐵)
2 limsupubuzmpt.z . . . 4 𝑍 = (ℤ𝑀)
3 limsupubuzmpt.j . . . . 5 𝑗𝜑
4 limsupubuzmpt.b . . . . 5 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
5 eqid 2738 . . . . 5 (𝑗𝑍𝐵) = (𝑗𝑍𝐵)
63, 4, 5fmptdf 6991 . . . 4 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
7 limsupubuzmpt.n . . . 4 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)
81, 2, 6, 7limsupubuz 43254 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦)
95a1i 11 . . . . . . 7 (𝜑 → (𝑗𝑍𝐵) = (𝑗𝑍𝐵))
109, 4fvmpt2d 6888 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1110breq1d 5084 . . . . 5 ((𝜑𝑗𝑍) → (((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦𝐵𝑦))
123, 11ralbida 3159 . . . 4 (𝜑 → (∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 𝐵𝑦))
1312rexbidv 3226 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦))
148, 13mpbid 231 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦)
15 breq2 5078 . . . 4 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
1615ralbidv 3112 . . 3 (𝑦 = 𝑥 → (∀𝑗𝑍 𝐵𝑦 ↔ ∀𝑗𝑍 𝐵𝑥))
1716cbvrexvw 3384 . 2 (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
1814, 17sylib 217 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wne 2943  wral 3064  wrex 3065   class class class wbr 5074  cmpt 5157  cfv 6433  cr 10870  +∞cpnf 11006  cle 11010  cuz 12582  lim supclsp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-ico 13085  df-fz 13240  df-fl 13512  df-ceil 13513  df-limsup 15180
This theorem is referenced by:  smflimsuplem2  44354  smflimsuplem5  44357
  Copyright terms: Public domain W3C validator