Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuzmpt Structured version   Visualization version   GIF version

Theorem limsupubuzmpt 43150
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuzmpt.j 𝑗𝜑
limsupubuzmpt.z 𝑍 = (ℤ𝑀)
limsupubuzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
limsupubuzmpt.n (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)
Assertion
Ref Expression
limsupubuzmpt (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Distinct variable groups:   𝑥,𝐵   𝑗,𝑀   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐵(𝑗)   𝑀(𝑥)

Proof of Theorem limsupubuzmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5178 . . . 4 𝑗(𝑗𝑍𝐵)
2 limsupubuzmpt.z . . . 4 𝑍 = (ℤ𝑀)
3 limsupubuzmpt.j . . . . 5 𝑗𝜑
4 limsupubuzmpt.b . . . . 5 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
5 eqid 2738 . . . . 5 (𝑗𝑍𝐵) = (𝑗𝑍𝐵)
63, 4, 5fmptdf 6973 . . . 4 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
7 limsupubuzmpt.n . . . 4 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)
81, 2, 6, 7limsupubuz 43144 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦)
95a1i 11 . . . . . . 7 (𝜑 → (𝑗𝑍𝐵) = (𝑗𝑍𝐵))
109, 4fvmpt2d 6870 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1110breq1d 5080 . . . . 5 ((𝜑𝑗𝑍) → (((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦𝐵𝑦))
123, 11ralbida 3156 . . . 4 (𝜑 → (∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 𝐵𝑦))
1312rexbidv 3225 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦))
148, 13mpbid 231 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦)
15 breq2 5074 . . . 4 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
1615ralbidv 3120 . . 3 (𝑦 = 𝑥 → (∀𝑗𝑍 𝐵𝑦 ↔ ∀𝑗𝑍 𝐵𝑥))
1716cbvrexvw 3373 . 2 (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
1814, 17sylib 217 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wne 2942  wral 3063  wrex 3064   class class class wbr 5070  cmpt 5153  cfv 6418  cr 10801  +∞cpnf 10937  cle 10941  cuz 12511  lim supclsp 15107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-ico 13014  df-fz 13169  df-fl 13440  df-ceil 13441  df-limsup 15108
This theorem is referenced by:  smflimsuplem2  44241  smflimsuplem5  44244
  Copyright terms: Public domain W3C validator