![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupubuzmpt | Structured version Visualization version GIF version |
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupubuzmpt.j | ⊢ Ⅎ𝑗𝜑 |
limsupubuzmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupubuzmpt.b | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
limsupubuzmpt.n | ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ≠ +∞) |
Ref | Expression |
---|---|
limsupubuzmpt | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5274 | . . . 4 ⊢ Ⅎ𝑗(𝑗 ∈ 𝑍 ↦ 𝐵) | |
2 | limsupubuzmpt.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | limsupubuzmpt.j | . . . . 5 ⊢ Ⅎ𝑗𝜑 | |
4 | limsupubuzmpt.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
5 | eqid 2740 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ 𝐵) = (𝑗 ∈ 𝑍 ↦ 𝐵) | |
6 | 3, 4, 5 | fmptdf 7151 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
7 | limsupubuzmpt.n | . . . 4 ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ≠ +∞) | |
8 | 1, 2, 6, 7 | limsupubuz 45634 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦) |
9 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵) = (𝑗 ∈ 𝑍 ↦ 𝐵)) |
10 | 9, 4 | fvmpt2d 7042 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) = 𝐵) |
11 | 10 | breq1d 5176 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) |
12 | 3, 11 | ralbida 3276 | . . . 4 ⊢ (𝜑 → (∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦)) |
13 | 12 | rexbidv 3185 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦)) |
14 | 8, 13 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦) |
15 | breq2 5170 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑥)) | |
16 | 15 | ralbidv 3184 | . . 3 ⊢ (𝑦 = 𝑥 → (∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) |
17 | 16 | cbvrexvw 3244 | . 2 ⊢ (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
18 | 14, 17 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 ℝcr 11183 +∞cpnf 11321 ≤ cle 11325 ℤ≥cuz 12903 lim supclsp 15516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-ico 13413 df-fz 13568 df-fl 13843 df-ceil 13844 df-limsup 15517 |
This theorem is referenced by: smflimsuplem2 46742 smflimsuplem5 46745 |
Copyright terms: Public domain | W3C validator |