Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuzmpt Structured version   Visualization version   GIF version

Theorem limsupubuzmpt 45640
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuzmpt.j 𝑗𝜑
limsupubuzmpt.z 𝑍 = (ℤ𝑀)
limsupubuzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
limsupubuzmpt.n (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)
Assertion
Ref Expression
limsupubuzmpt (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Distinct variable groups:   𝑥,𝐵   𝑗,𝑀   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐵(𝑗)   𝑀(𝑥)

Proof of Theorem limsupubuzmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5274 . . . 4 𝑗(𝑗𝑍𝐵)
2 limsupubuzmpt.z . . . 4 𝑍 = (ℤ𝑀)
3 limsupubuzmpt.j . . . . 5 𝑗𝜑
4 limsupubuzmpt.b . . . . 5 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
5 eqid 2740 . . . . 5 (𝑗𝑍𝐵) = (𝑗𝑍𝐵)
63, 4, 5fmptdf 7151 . . . 4 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
7 limsupubuzmpt.n . . . 4 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)
81, 2, 6, 7limsupubuz 45634 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦)
95a1i 11 . . . . . . 7 (𝜑 → (𝑗𝑍𝐵) = (𝑗𝑍𝐵))
109, 4fvmpt2d 7042 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1110breq1d 5176 . . . . 5 ((𝜑𝑗𝑍) → (((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦𝐵𝑦))
123, 11ralbida 3276 . . . 4 (𝜑 → (∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 𝐵𝑦))
1312rexbidv 3185 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦))
148, 13mpbid 232 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦)
15 breq2 5170 . . . 4 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
1615ralbidv 3184 . . 3 (𝑦 = 𝑥 → (∀𝑗𝑍 𝐵𝑦 ↔ ∀𝑗𝑍 𝐵𝑥))
1716cbvrexvw 3244 . 2 (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
1814, 17sylib 218 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wne 2946  wral 3067  wrex 3076   class class class wbr 5166  cmpt 5249  cfv 6573  cr 11183  +∞cpnf 11321  cle 11325  cuz 12903  lim supclsp 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-ico 13413  df-fz 13568  df-fl 13843  df-ceil 13844  df-limsup 15517
This theorem is referenced by:  smflimsuplem2  46742  smflimsuplem5  46745
  Copyright terms: Public domain W3C validator