Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuzmpt Structured version   Visualization version   GIF version

Theorem limsupubuzmpt 44421
Description: If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuzmpt.j 𝑗𝜑
limsupubuzmpt.z 𝑍 = (ℤ𝑀)
limsupubuzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
limsupubuzmpt.n (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)
Assertion
Ref Expression
limsupubuzmpt (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Distinct variable groups:   𝑥,𝐵   𝑗,𝑀   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐵(𝑗)   𝑀(𝑥)

Proof of Theorem limsupubuzmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5255 . . . 4 𝑗(𝑗𝑍𝐵)
2 limsupubuzmpt.z . . . 4 𝑍 = (ℤ𝑀)
3 limsupubuzmpt.j . . . . 5 𝑗𝜑
4 limsupubuzmpt.b . . . . 5 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
5 eqid 2732 . . . . 5 (𝑗𝑍𝐵) = (𝑗𝑍𝐵)
63, 4, 5fmptdf 7113 . . . 4 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
7 limsupubuzmpt.n . . . 4 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) ≠ +∞)
81, 2, 6, 7limsupubuz 44415 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦)
95a1i 11 . . . . . . 7 (𝜑 → (𝑗𝑍𝐵) = (𝑗𝑍𝐵))
109, 4fvmpt2d 7008 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1110breq1d 5157 . . . . 5 ((𝜑𝑗𝑍) → (((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦𝐵𝑦))
123, 11ralbida 3267 . . . 4 (𝜑 → (∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 𝐵𝑦))
1312rexbidv 3178 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦))
148, 13mpbid 231 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦)
15 breq2 5151 . . . 4 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
1615ralbidv 3177 . . 3 (𝑦 = 𝑥 → (∀𝑗𝑍 𝐵𝑦 ↔ ∀𝑗𝑍 𝐵𝑥))
1716cbvrexvw 3235 . 2 (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
1814, 17sylib 217 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wne 2940  wral 3061  wrex 3070   class class class wbr 5147  cmpt 5230  cfv 6540  cr 11105  +∞cpnf 11241  cle 11245  cuz 12818  lim supclsp 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-ico 13326  df-fz 13481  df-fl 13753  df-ceil 13754  df-limsup 15411
This theorem is referenced by:  smflimsuplem2  45523  smflimsuplem5  45526
  Copyright terms: Public domain W3C validator