Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfmpt Structured version   Visualization version   GIF version

Theorem xlimpnfmpt 40708
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfmpt.k 𝑘𝜑
xlimpnfmpt.m (𝜑𝑀 ∈ ℤ)
xlimpnfmpt.z 𝑍 = (ℤ𝑀)
xlimpnfmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
xlimpnfmpt.f 𝐹 = (𝑘𝑍𝐵)
Assertion
Ref Expression
xlimpnfmpt (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
Distinct variable groups:   𝐵,𝑗,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑘)   𝐹(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem xlimpnfmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimpnfmpt.f . . . 4 𝐹 = (𝑘𝑍𝐵)
2 nfmpt1 4906 . . . 4 𝑘(𝑘𝑍𝐵)
31, 2nfcxfr 2905 . . 3 𝑘𝐹
4 xlimpnfmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 xlimpnfmpt.z . . 3 𝑍 = (ℤ𝑀)
6 xlimpnfmpt.k . . . 4 𝑘𝜑
7 xlimpnfmpt.b . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
86, 7, 1fmptdf 6577 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
93, 4, 5, 8xlimpnf 40706 . 2 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘)))
10 nfv 2009 . . . . . 6 𝑘 𝑖𝑍
116, 10nfan 1998 . . . . 5 𝑘(𝜑𝑖𝑍)
125uztrn2 11904 . . . . . . . 8 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
1312adantll 705 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
14 simpll 783 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝜑)
1514, 13, 7syl2anc 579 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ*)
161fvmpt2 6480 . . . . . . 7 ((𝑘𝑍𝐵 ∈ ℝ*) → (𝐹𝑘) = 𝐵)
1713, 15, 16syl2anc 579 . . . . . 6 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) = 𝐵)
1817breq2d 4821 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝑦 ≤ (𝐹𝑘) ↔ 𝑦𝐵))
1911, 18ralbida 3129 . . . 4 ((𝜑𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∀𝑘 ∈ (ℤ𝑖)𝑦𝐵))
2019rexbidva 3196 . . 3 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵))
2120ralbidv 3133 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵))
22 breq1 4812 . . . . . 6 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2322rexralbidv 3205 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑥𝐵))
24 fveq2 6375 . . . . . . 7 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2524raleqdv 3292 . . . . . 6 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘 ∈ (ℤ𝑗)𝑥𝐵))
2625cbvrexv 3320 . . . . 5 (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵)
2723, 26syl6bb 278 . . . 4 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
2827cbvralv 3319 . . 3 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵)
2928a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
309, 21, 293bitrd 296 1 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wnf 1878  wcel 2155  wral 3055  wrex 3056   class class class wbr 4809  cmpt 4888  cfv 6068  cr 10188  +∞cpnf 10325  *cxr 10327  cle 10329  cz 11624  cuz 11886  ~~>*clsxlim 40682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-z 11625  df-uz 11887  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-topgen 16370  df-ordt 16427  df-ps 17466  df-tsr 17467  df-top 20978  df-topon 20995  df-bases 21030  df-lm 21313  df-xlim 40683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator