| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimpnfmpt | Structured version Visualization version GIF version | ||
| Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimpnfmpt.k | ⊢ Ⅎ𝑘𝜑 |
| xlimpnfmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimpnfmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimpnfmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
| xlimpnfmpt.f | ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| xlimpnfmpt | ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimpnfmpt.f | . . . 4 ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) | |
| 2 | nfmpt1 5209 | . . . 4 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ 𝐵) | |
| 3 | 1, 2 | nfcxfr 2890 | . . 3 ⊢ Ⅎ𝑘𝐹 |
| 4 | xlimpnfmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | xlimpnfmpt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | xlimpnfmpt.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 7 | xlimpnfmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
| 8 | 6, 7, 1 | fmptdf 7092 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 9 | 3, 4, 5, 8 | xlimpnf 45847 | . 2 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘))) |
| 10 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑘 𝑖 ∈ 𝑍 | |
| 11 | 6, 10 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑖 ∈ 𝑍) |
| 12 | 5 | uztrn2 12819 | . . . . . . . 8 ⊢ ((𝑖 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑘 ∈ 𝑍) |
| 13 | 12 | adantll 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑘 ∈ 𝑍) |
| 14 | simpll 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝜑) | |
| 15 | 14, 13, 7 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝐵 ∈ ℝ*) |
| 16 | 1 | fvmpt2 6982 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝐵 ∈ ℝ*) → (𝐹‘𝑘) = 𝐵) |
| 17 | 13, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑘) = 𝐵) |
| 18 | 17 | breq2d 5122 | . . . . 5 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (𝑦 ≤ (𝐹‘𝑘) ↔ 𝑦 ≤ 𝐵)) |
| 19 | 11, 18 | ralbida 3249 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
| 20 | 19 | rexbidva 3156 | . . 3 ⊢ (𝜑 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘) ↔ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
| 21 | 20 | ralbidv 3157 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
| 22 | breq1 5113 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ 𝐵 ↔ 𝑥 ≤ 𝐵)) | |
| 23 | 22 | rexralbidv 3204 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵)) |
| 24 | fveq2 6861 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
| 25 | 24 | raleqdv 3301 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
| 26 | 25 | cbvrexvw 3217 | . . . . 5 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵) |
| 27 | 23, 26 | bitrdi 287 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
| 28 | 27 | cbvralvw 3216 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵) |
| 29 | 28 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
| 30 | 9, 21, 29 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 ℝcr 11074 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 ℤcz 12536 ℤ≥cuz 12800 ~~>*clsxlim 45823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-1o 8437 df-2o 8438 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-z 12537 df-uz 12801 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-topgen 17413 df-ordt 17471 df-ps 18532 df-tsr 18533 df-top 22788 df-topon 22805 df-bases 22840 df-lm 23123 df-xlim 45824 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |