| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimpnfmpt | Structured version Visualization version GIF version | ||
| Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimpnfmpt.k | ⊢ Ⅎ𝑘𝜑 |
| xlimpnfmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimpnfmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimpnfmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
| xlimpnfmpt.f | ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| xlimpnfmpt | ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimpnfmpt.f | . . . 4 ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) | |
| 2 | nfmpt1 5188 | . . . 4 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ 𝐵) | |
| 3 | 1, 2 | nfcxfr 2892 | . . 3 ⊢ Ⅎ𝑘𝐹 |
| 4 | xlimpnfmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | xlimpnfmpt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | xlimpnfmpt.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 7 | xlimpnfmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
| 8 | 6, 7, 1 | fmptdf 7050 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 9 | 3, 4, 5, 8 | xlimpnf 45888 | . 2 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘))) |
| 10 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑘 𝑖 ∈ 𝑍 | |
| 11 | 6, 10 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑖 ∈ 𝑍) |
| 12 | 5 | uztrn2 12751 | . . . . . . . 8 ⊢ ((𝑖 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑘 ∈ 𝑍) |
| 13 | 12 | adantll 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑘 ∈ 𝑍) |
| 14 | simpll 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝜑) | |
| 15 | 14, 13, 7 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝐵 ∈ ℝ*) |
| 16 | 1 | fvmpt2 6940 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝐵 ∈ ℝ*) → (𝐹‘𝑘) = 𝐵) |
| 17 | 13, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑘) = 𝐵) |
| 18 | 17 | breq2d 5101 | . . . . 5 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (𝑦 ≤ (𝐹‘𝑘) ↔ 𝑦 ≤ 𝐵)) |
| 19 | 11, 18 | ralbida 3243 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
| 20 | 19 | rexbidva 3154 | . . 3 ⊢ (𝜑 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘) ↔ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
| 21 | 20 | ralbidv 3155 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
| 22 | breq1 5092 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ 𝐵 ↔ 𝑥 ≤ 𝐵)) | |
| 23 | 22 | rexralbidv 3198 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵)) |
| 24 | fveq2 6822 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
| 25 | 24 | raleqdv 3292 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
| 26 | 25 | cbvrexvw 3211 | . . . . 5 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵) |
| 27 | 23, 26 | bitrdi 287 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
| 28 | 27 | cbvralvw 3210 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵) |
| 29 | 28 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
| 30 | 9, 21, 29 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 ℝcr 11005 +∞cpnf 11143 ℝ*cxr 11145 ≤ cle 11147 ℤcz 12468 ℤ≥cuz 12732 ~~>*clsxlim 45864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-z 12469 df-uz 12733 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-topgen 17347 df-ordt 17405 df-ps 18472 df-tsr 18473 df-top 22809 df-topon 22826 df-bases 22861 df-lm 23144 df-xlim 45865 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |