Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfmpt Structured version   Visualization version   GIF version

Theorem xlimpnfmpt 45815
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfmpt.k 𝑘𝜑
xlimpnfmpt.m (𝜑𝑀 ∈ ℤ)
xlimpnfmpt.z 𝑍 = (ℤ𝑀)
xlimpnfmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
xlimpnfmpt.f 𝐹 = (𝑘𝑍𝐵)
Assertion
Ref Expression
xlimpnfmpt (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
Distinct variable groups:   𝐵,𝑗,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑘)   𝐹(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem xlimpnfmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimpnfmpt.f . . . 4 𝐹 = (𝑘𝑍𝐵)
2 nfmpt1 5201 . . . 4 𝑘(𝑘𝑍𝐵)
31, 2nfcxfr 2889 . . 3 𝑘𝐹
4 xlimpnfmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 xlimpnfmpt.z . . 3 𝑍 = (ℤ𝑀)
6 xlimpnfmpt.k . . . 4 𝑘𝜑
7 xlimpnfmpt.b . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
86, 7, 1fmptdf 7071 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
93, 4, 5, 8xlimpnf 45813 . 2 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘)))
10 nfv 1914 . . . . . 6 𝑘 𝑖𝑍
116, 10nfan 1899 . . . . 5 𝑘(𝜑𝑖𝑍)
125uztrn2 12788 . . . . . . . 8 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
1312adantll 714 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
14 simpll 766 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝜑)
1514, 13, 7syl2anc 584 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ*)
161fvmpt2 6961 . . . . . . 7 ((𝑘𝑍𝐵 ∈ ℝ*) → (𝐹𝑘) = 𝐵)
1713, 15, 16syl2anc 584 . . . . . 6 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) = 𝐵)
1817breq2d 5114 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝑦 ≤ (𝐹𝑘) ↔ 𝑦𝐵))
1911, 18ralbida 3246 . . . 4 ((𝜑𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∀𝑘 ∈ (ℤ𝑖)𝑦𝐵))
2019rexbidva 3155 . . 3 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵))
2120ralbidv 3156 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵))
22 breq1 5105 . . . . . 6 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2322rexralbidv 3201 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑥𝐵))
24 fveq2 6840 . . . . . . 7 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2524raleqdv 3296 . . . . . 6 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘 ∈ (ℤ𝑗)𝑥𝐵))
2625cbvrexvw 3214 . . . . 5 (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵)
2723, 26bitrdi 287 . . . 4 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
2827cbvralvw 3213 . . 3 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵)
2928a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
309, 21, 293bitrd 305 1 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cmpt 5183  cfv 6499  cr 11043  +∞cpnf 11181  *cxr 11183  cle 11185  cz 12505  cuz 12769  ~~>*clsxlim 45789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-2o 8412  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-z 12506  df-uz 12770  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-topgen 17382  df-ordt 17440  df-ps 18501  df-tsr 18502  df-top 22757  df-topon 22774  df-bases 22809  df-lm 23092  df-xlim 45790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator