Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfmpt Structured version   Visualization version   GIF version

Theorem xlimpnfmpt 43356
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfmpt.k 𝑘𝜑
xlimpnfmpt.m (𝜑𝑀 ∈ ℤ)
xlimpnfmpt.z 𝑍 = (ℤ𝑀)
xlimpnfmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
xlimpnfmpt.f 𝐹 = (𝑘𝑍𝐵)
Assertion
Ref Expression
xlimpnfmpt (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
Distinct variable groups:   𝐵,𝑗,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑘)   𝐹(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem xlimpnfmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimpnfmpt.f . . . 4 𝐹 = (𝑘𝑍𝐵)
2 nfmpt1 5187 . . . 4 𝑘(𝑘𝑍𝐵)
31, 2nfcxfr 2907 . . 3 𝑘𝐹
4 xlimpnfmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 xlimpnfmpt.z . . 3 𝑍 = (ℤ𝑀)
6 xlimpnfmpt.k . . . 4 𝑘𝜑
7 xlimpnfmpt.b . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
86, 7, 1fmptdf 6988 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
93, 4, 5, 8xlimpnf 43354 . 2 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘)))
10 nfv 1921 . . . . . 6 𝑘 𝑖𝑍
116, 10nfan 1906 . . . . 5 𝑘(𝜑𝑖𝑍)
125uztrn2 12600 . . . . . . . 8 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
1312adantll 711 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
14 simpll 764 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝜑)
1514, 13, 7syl2anc 584 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ*)
161fvmpt2 6883 . . . . . . 7 ((𝑘𝑍𝐵 ∈ ℝ*) → (𝐹𝑘) = 𝐵)
1713, 15, 16syl2anc 584 . . . . . 6 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) = 𝐵)
1817breq2d 5091 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝑦 ≤ (𝐹𝑘) ↔ 𝑦𝐵))
1911, 18ralbida 3159 . . . 4 ((𝜑𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∀𝑘 ∈ (ℤ𝑖)𝑦𝐵))
2019rexbidva 3227 . . 3 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵))
2120ralbidv 3123 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦 ≤ (𝐹𝑘) ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵))
22 breq1 5082 . . . . . 6 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2322rexralbidv 3232 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑥𝐵))
24 fveq2 6771 . . . . . . 7 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2524raleqdv 3347 . . . . . 6 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘 ∈ (ℤ𝑗)𝑥𝐵))
2625cbvrexvw 3382 . . . . 5 (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵)
2723, 26bitrdi 287 . . . 4 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
2827cbvralvw 3381 . . 3 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵)
2928a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
309, 21, 293bitrd 305 1 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wnf 1790  wcel 2110  wral 3066  wrex 3067   class class class wbr 5079  cmpt 5162  cfv 6432  cr 10871  +∞cpnf 11007  *cxr 11009  cle 11011  cz 12319  cuz 12581  ~~>*clsxlim 43330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-1o 8288  df-er 8481  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fi 9148  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-z 12320  df-uz 12582  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-topgen 17152  df-ordt 17210  df-ps 18282  df-tsr 18283  df-top 22041  df-topon 22058  df-bases 22094  df-lm 22378  df-xlim 43331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator