Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrralrecnnge Structured version   Visualization version   GIF version

Theorem xrralrecnnge 41669
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
xrralrecnnge.n 𝑛𝜑
xrralrecnnge.a (𝜑𝐴 ∈ ℝ)
xrralrecnnge.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrralrecnnge (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem xrralrecnnge
StepHypRef Expression
1 xrralrecnnge.n . . . . 5 𝑛𝜑
2 nfv 1915 . . . . 5 𝑛 𝐴𝐵
31, 2nfan 1900 . . . 4 𝑛(𝜑𝐴𝐵)
4 xrralrecnnge.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
54adantr 483 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
6 nnrecre 11682 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
76adantl 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
85, 7resubcld 11070 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ)
98rexrd 10693 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
109adantlr 713 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
11 xrralrecnnge.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
1211ad2antrr 724 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
134rexrd 10693 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1413ad2antrr 724 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
15 nnrp 12403 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
1615rpreccld 12444 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1716adantl 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
185, 17ltsubrpd 12466 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
1918adantlr 713 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
20 simplr 767 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴𝐵)
2110, 14, 12, 19, 20xrltletrd 12557 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐵)
2210, 12, 21xrltled 12546 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ≤ 𝐵)
2322ex 415 . . . 4 ((𝜑𝐴𝐵) → (𝑛 ∈ ℕ → (𝐴 − (1 / 𝑛)) ≤ 𝐵))
243, 23ralrimi 3218 . . 3 ((𝜑𝐴𝐵) → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)
2524ex 415 . 2 (𝜑 → (𝐴𝐵 → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
26 pnfxr 10697 . . . . . . . 8 +∞ ∈ ℝ*
2726a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
284ltpnfd 12519 . . . . . . 7 (𝜑𝐴 < +∞)
2913, 27, 28xrltled 12546 . . . . . 6 (𝜑𝐴 ≤ +∞)
3029ad2antrr 724 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
31 id 22 . . . . . . 7 (𝐵 = +∞ → 𝐵 = +∞)
3231eqcomd 2829 . . . . . 6 (𝐵 = +∞ → +∞ = 𝐵)
3332adantl 484 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → +∞ = 𝐵)
3430, 33breqtrd 5094 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → 𝐴𝐵)
3511ad2antrr 724 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
36 1nn 11651 . . . . . . . . . . . . . 14 1 ∈ ℕ
3736a1i 11 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → 1 ∈ ℕ)
38 id 22 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)
39 oveq2 7166 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
4039oveq2d 7174 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝐴 − (1 / 𝑛)) = (𝐴 − (1 / 1)))
4140breq1d 5078 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝐴 − (1 / 𝑛)) ≤ 𝐵 ↔ (𝐴 − (1 / 1)) ≤ 𝐵))
4241rspcva 3623 . . . . . . . . . . . . 13 ((1 ∈ ℕ ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → (𝐴 − (1 / 1)) ≤ 𝐵)
4337, 38, 42syl2anc 586 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → (𝐴 − (1 / 1)) ≤ 𝐵)
4443adantr 483 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ 𝐵)
45 simpr 487 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → 𝐵 = -∞)
4644, 45breqtrd 5094 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ -∞)
4746adantll 712 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ -∞)
48 1red 10644 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
49 ax-1ne0 10608 . . . . . . . . . . . . . . 15 1 ≠ 0
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
5148, 48, 50redivcld 11470 . . . . . . . . . . . . 13 (𝜑 → (1 / 1) ∈ ℝ)
524, 51resubcld 11070 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (1 / 1)) ∈ ℝ)
5352mnfltd 12522 . . . . . . . . . . 11 (𝜑 → -∞ < (𝐴 − (1 / 1)))
54 mnfxr 10700 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
5554a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
5652rexrd 10693 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (1 / 1)) ∈ ℝ*)
5755, 56xrltnled 41638 . . . . . . . . . . 11 (𝜑 → (-∞ < (𝐴 − (1 / 1)) ↔ ¬ (𝐴 − (1 / 1)) ≤ -∞))
5853, 57mpbid 234 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 − (1 / 1)) ≤ -∞)
5958ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = -∞) → ¬ (𝐴 − (1 / 1)) ≤ -∞)
6047, 59pm2.65da 815 . . . . . . . 8 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → ¬ 𝐵 = -∞)
6160neqned 3025 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐵 ≠ -∞)
6261adantr 483 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ -∞)
63 neqne 3026 . . . . . . 7 𝐵 = +∞ → 𝐵 ≠ +∞)
6463adantl 484 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ +∞)
6535, 62, 64xrred 41640 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ)
66 nfv 1915 . . . . . . . . . . 11 𝑛 𝐵 ∈ ℝ
671, 66nfan 1900 . . . . . . . . . 10 𝑛(𝜑𝐵 ∈ ℝ)
6813adantr 483 . . . . . . . . . 10 ((𝜑𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
69 simpr 487 . . . . . . . . . 10 ((𝜑𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
7067, 68, 69xrralrecnnle 41660 . . . . . . . . 9 ((𝜑𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
715adantlr 713 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
726adantl 484 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
7369adantr 483 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
7471, 72, 73lesubaddd 11239 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴 ≤ (𝐵 + (1 / 𝑛))))
7574bicomd 225 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐴 ≤ (𝐵 + (1 / 𝑛)) ↔ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
7667, 75ralbida 3232 . . . . . . . . 9 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
7770, 76bitr2d 282 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
7877biimpd 231 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
7978imp 409 . . . . . 6 (((𝜑𝐵 ∈ ℝ) ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐴𝐵)
8079an32s 650 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 ∈ ℝ) → 𝐴𝐵)
8165, 80syldan 593 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐴𝐵)
8234, 81pm2.61dan 811 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐴𝐵)
8382ex 415 . 2 (𝜑 → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
8425, 83impbid 214 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  wcel 2114  wne 3018  wral 3140   class class class wbr 5068  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  +crp 12392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fl 13165
This theorem is referenced by:  preimageiingt  43005
  Copyright terms: Public domain W3C validator