Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrralrecnnge Structured version   Visualization version   GIF version

Theorem xrralrecnnge 42820
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
xrralrecnnge.n 𝑛𝜑
xrralrecnnge.a (𝜑𝐴 ∈ ℝ)
xrralrecnnge.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrralrecnnge (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem xrralrecnnge
StepHypRef Expression
1 xrralrecnnge.n . . . . 5 𝑛𝜑
2 nfv 1918 . . . . 5 𝑛 𝐴𝐵
31, 2nfan 1903 . . . 4 𝑛(𝜑𝐴𝐵)
4 xrralrecnnge.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
54adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
6 nnrecre 11945 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
76adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
85, 7resubcld 11333 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ)
98rexrd 10956 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
109adantlr 711 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
11 xrralrecnnge.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
1211ad2antrr 722 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
134rexrd 10956 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1413ad2antrr 722 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
15 nnrp 12670 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
1615rpreccld 12711 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1716adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
185, 17ltsubrpd 12733 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
1918adantlr 711 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
20 simplr 765 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴𝐵)
2110, 14, 12, 19, 20xrltletrd 12824 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐵)
2210, 12, 21xrltled 12813 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ≤ 𝐵)
2322ex 412 . . . 4 ((𝜑𝐴𝐵) → (𝑛 ∈ ℕ → (𝐴 − (1 / 𝑛)) ≤ 𝐵))
243, 23ralrimi 3139 . . 3 ((𝜑𝐴𝐵) → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)
2524ex 412 . 2 (𝜑 → (𝐴𝐵 → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
26 pnfxr 10960 . . . . . . . 8 +∞ ∈ ℝ*
2726a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
284ltpnfd 12786 . . . . . . 7 (𝜑𝐴 < +∞)
2913, 27, 28xrltled 12813 . . . . . 6 (𝜑𝐴 ≤ +∞)
3029ad2antrr 722 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
31 id 22 . . . . . . 7 (𝐵 = +∞ → 𝐵 = +∞)
3231eqcomd 2744 . . . . . 6 (𝐵 = +∞ → +∞ = 𝐵)
3332adantl 481 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → +∞ = 𝐵)
3430, 33breqtrd 5096 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → 𝐴𝐵)
3511ad2antrr 722 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
36 1nn 11914 . . . . . . . . . . . . . 14 1 ∈ ℕ
3736a1i 11 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → 1 ∈ ℕ)
38 id 22 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)
39 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
4039oveq2d 7271 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝐴 − (1 / 𝑛)) = (𝐴 − (1 / 1)))
4140breq1d 5080 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝐴 − (1 / 𝑛)) ≤ 𝐵 ↔ (𝐴 − (1 / 1)) ≤ 𝐵))
4241rspcva 3550 . . . . . . . . . . . . 13 ((1 ∈ ℕ ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → (𝐴 − (1 / 1)) ≤ 𝐵)
4337, 38, 42syl2anc 583 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → (𝐴 − (1 / 1)) ≤ 𝐵)
4443adantr 480 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ 𝐵)
45 simpr 484 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → 𝐵 = -∞)
4644, 45breqtrd 5096 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ -∞)
4746adantll 710 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ -∞)
48 1red 10907 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
49 ax-1ne0 10871 . . . . . . . . . . . . . . 15 1 ≠ 0
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
5148, 48, 50redivcld 11733 . . . . . . . . . . . . 13 (𝜑 → (1 / 1) ∈ ℝ)
524, 51resubcld 11333 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (1 / 1)) ∈ ℝ)
5352mnfltd 12789 . . . . . . . . . . 11 (𝜑 → -∞ < (𝐴 − (1 / 1)))
54 mnfxr 10963 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
5554a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
5652rexrd 10956 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (1 / 1)) ∈ ℝ*)
5755, 56xrltnled 42792 . . . . . . . . . . 11 (𝜑 → (-∞ < (𝐴 − (1 / 1)) ↔ ¬ (𝐴 − (1 / 1)) ≤ -∞))
5853, 57mpbid 231 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 − (1 / 1)) ≤ -∞)
5958ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = -∞) → ¬ (𝐴 − (1 / 1)) ≤ -∞)
6047, 59pm2.65da 813 . . . . . . . 8 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → ¬ 𝐵 = -∞)
6160neqned 2949 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐵 ≠ -∞)
6261adantr 480 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ -∞)
63 neqne 2950 . . . . . . 7 𝐵 = +∞ → 𝐵 ≠ +∞)
6463adantl 481 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ +∞)
6535, 62, 64xrred 42794 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ)
66 nfv 1918 . . . . . . . . . . 11 𝑛 𝐵 ∈ ℝ
671, 66nfan 1903 . . . . . . . . . 10 𝑛(𝜑𝐵 ∈ ℝ)
6813adantr 480 . . . . . . . . . 10 ((𝜑𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
69 simpr 484 . . . . . . . . . 10 ((𝜑𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
7067, 68, 69xrralrecnnle 42812 . . . . . . . . 9 ((𝜑𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
715adantlr 711 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
726adantl 481 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
7369adantr 480 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
7471, 72, 73lesubaddd 11502 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴 ≤ (𝐵 + (1 / 𝑛))))
7574bicomd 222 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐴 ≤ (𝐵 + (1 / 𝑛)) ↔ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
7667, 75ralbida 3156 . . . . . . . . 9 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
7770, 76bitr2d 279 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
7877biimpd 228 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
7978imp 406 . . . . . 6 (((𝜑𝐵 ∈ ℝ) ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐴𝐵)
8079an32s 648 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 ∈ ℝ) → 𝐴𝐵)
8165, 80syldan 590 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐴𝐵)
8234, 81pm2.61dan 809 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐴𝐵)
8382ex 412 . 2 (𝜑 → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
8425, 83impbid 211 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fl 13440
This theorem is referenced by:  preimageiingt  44144
  Copyright terms: Public domain W3C validator