Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrralrecnnge Structured version   Visualization version   GIF version

Theorem xrralrecnnge 45305
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
xrralrecnnge.n 𝑛𝜑
xrralrecnnge.a (𝜑𝐴 ∈ ℝ)
xrralrecnnge.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrralrecnnge (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem xrralrecnnge
StepHypRef Expression
1 xrralrecnnge.n . . . . 5 𝑛𝜑
2 nfv 1913 . . . . 5 𝑛 𝐴𝐵
31, 2nfan 1898 . . . 4 𝑛(𝜑𝐴𝐵)
4 xrralrecnnge.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
54adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
6 nnrecre 12335 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
76adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
85, 7resubcld 11718 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ)
98rexrd 11340 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
109adantlr 714 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
11 xrralrecnnge.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
1211ad2antrr 725 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
134rexrd 11340 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1413ad2antrr 725 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
15 nnrp 13068 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
1615rpreccld 13109 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1716adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
185, 17ltsubrpd 13131 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
1918adantlr 714 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
20 simplr 768 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴𝐵)
2110, 14, 12, 19, 20xrltletrd 13223 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐵)
2210, 12, 21xrltled 13212 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ≤ 𝐵)
2322ex 412 . . . 4 ((𝜑𝐴𝐵) → (𝑛 ∈ ℕ → (𝐴 − (1 / 𝑛)) ≤ 𝐵))
243, 23ralrimi 3263 . . 3 ((𝜑𝐴𝐵) → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)
2524ex 412 . 2 (𝜑 → (𝐴𝐵 → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
26 pnfxr 11344 . . . . . . . 8 +∞ ∈ ℝ*
2726a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
284ltpnfd 13184 . . . . . . 7 (𝜑𝐴 < +∞)
2913, 27, 28xrltled 13212 . . . . . 6 (𝜑𝐴 ≤ +∞)
3029ad2antrr 725 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
31 id 22 . . . . . . 7 (𝐵 = +∞ → 𝐵 = +∞)
3231eqcomd 2746 . . . . . 6 (𝐵 = +∞ → +∞ = 𝐵)
3332adantl 481 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → +∞ = 𝐵)
3430, 33breqtrd 5192 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → 𝐴𝐵)
3511ad2antrr 725 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
36 1nn 12304 . . . . . . . . . . . . . 14 1 ∈ ℕ
3736a1i 11 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → 1 ∈ ℕ)
38 id 22 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)
39 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
4039oveq2d 7464 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝐴 − (1 / 𝑛)) = (𝐴 − (1 / 1)))
4140breq1d 5176 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝐴 − (1 / 𝑛)) ≤ 𝐵 ↔ (𝐴 − (1 / 1)) ≤ 𝐵))
4241rspcva 3633 . . . . . . . . . . . . 13 ((1 ∈ ℕ ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → (𝐴 − (1 / 1)) ≤ 𝐵)
4337, 38, 42syl2anc 583 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → (𝐴 − (1 / 1)) ≤ 𝐵)
4443adantr 480 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ 𝐵)
45 simpr 484 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → 𝐵 = -∞)
4644, 45breqtrd 5192 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ -∞)
4746adantll 713 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ -∞)
48 1red 11291 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
49 ax-1ne0 11253 . . . . . . . . . . . . . . 15 1 ≠ 0
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
5148, 48, 50redivcld 12122 . . . . . . . . . . . . 13 (𝜑 → (1 / 1) ∈ ℝ)
524, 51resubcld 11718 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (1 / 1)) ∈ ℝ)
5352mnfltd 13187 . . . . . . . . . . 11 (𝜑 → -∞ < (𝐴 − (1 / 1)))
54 mnfxr 11347 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
5554a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
5652rexrd 11340 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (1 / 1)) ∈ ℝ*)
5755, 56xrltnled 45278 . . . . . . . . . . 11 (𝜑 → (-∞ < (𝐴 − (1 / 1)) ↔ ¬ (𝐴 − (1 / 1)) ≤ -∞))
5853, 57mpbid 232 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 − (1 / 1)) ≤ -∞)
5958ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = -∞) → ¬ (𝐴 − (1 / 1)) ≤ -∞)
6047, 59pm2.65da 816 . . . . . . . 8 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → ¬ 𝐵 = -∞)
6160neqned 2953 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐵 ≠ -∞)
6261adantr 480 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ -∞)
63 neqne 2954 . . . . . . 7 𝐵 = +∞ → 𝐵 ≠ +∞)
6463adantl 481 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ +∞)
6535, 62, 64xrred 45280 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ)
66 nfv 1913 . . . . . . . . . . 11 𝑛 𝐵 ∈ ℝ
671, 66nfan 1898 . . . . . . . . . 10 𝑛(𝜑𝐵 ∈ ℝ)
6813adantr 480 . . . . . . . . . 10 ((𝜑𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
69 simpr 484 . . . . . . . . . 10 ((𝜑𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
7067, 68, 69xrralrecnnle 45298 . . . . . . . . 9 ((𝜑𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
715adantlr 714 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
726adantl 481 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
7369adantr 480 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
7471, 72, 73lesubaddd 11887 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴 ≤ (𝐵 + (1 / 𝑛))))
7574bicomd 223 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐴 ≤ (𝐵 + (1 / 𝑛)) ↔ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
7667, 75ralbida 3276 . . . . . . . . 9 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
7770, 76bitr2d 280 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
7877biimpd 229 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
7978imp 406 . . . . . 6 (((𝜑𝐵 ∈ ℝ) ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐴𝐵)
8079an32s 651 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 ∈ ℝ) → 𝐴𝐵)
8165, 80syldan 590 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐴𝐵)
8234, 81pm2.61dan 812 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐴𝐵)
8382ex 412 . 2 (𝜑 → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
8425, 83impbid 212 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wne 2946  wral 3067   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fl 13843
This theorem is referenced by:  preimageiingt  46641
  Copyright terms: Public domain W3C validator