Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrralrecnnge Structured version   Visualization version   GIF version

Theorem xrralrecnnge 42026
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
xrralrecnnge.n 𝑛𝜑
xrralrecnnge.a (𝜑𝐴 ∈ ℝ)
xrralrecnnge.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrralrecnnge (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem xrralrecnnge
StepHypRef Expression
1 xrralrecnnge.n . . . . 5 𝑛𝜑
2 nfv 1915 . . . . 5 𝑛 𝐴𝐵
31, 2nfan 1900 . . . 4 𝑛(𝜑𝐴𝐵)
4 xrralrecnnge.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
54adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
6 nnrecre 11667 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
76adantl 485 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
85, 7resubcld 11057 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ)
98rexrd 10680 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
109adantlr 714 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
11 xrralrecnnge.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
1211ad2antrr 725 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
134rexrd 10680 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1413ad2antrr 725 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
15 nnrp 12388 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
1615rpreccld 12429 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1716adantl 485 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
185, 17ltsubrpd 12451 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
1918adantlr 714 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
20 simplr 768 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴𝐵)
2110, 14, 12, 19, 20xrltletrd 12542 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐵)
2210, 12, 21xrltled 12531 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ≤ 𝐵)
2322ex 416 . . . 4 ((𝜑𝐴𝐵) → (𝑛 ∈ ℕ → (𝐴 − (1 / 𝑛)) ≤ 𝐵))
243, 23ralrimi 3180 . . 3 ((𝜑𝐴𝐵) → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)
2524ex 416 . 2 (𝜑 → (𝐴𝐵 → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
26 pnfxr 10684 . . . . . . . 8 +∞ ∈ ℝ*
2726a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
284ltpnfd 12504 . . . . . . 7 (𝜑𝐴 < +∞)
2913, 27, 28xrltled 12531 . . . . . 6 (𝜑𝐴 ≤ +∞)
3029ad2antrr 725 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
31 id 22 . . . . . . 7 (𝐵 = +∞ → 𝐵 = +∞)
3231eqcomd 2804 . . . . . 6 (𝐵 = +∞ → +∞ = 𝐵)
3332adantl 485 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → +∞ = 𝐵)
3430, 33breqtrd 5056 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → 𝐴𝐵)
3511ad2antrr 725 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
36 1nn 11636 . . . . . . . . . . . . . 14 1 ∈ ℕ
3736a1i 11 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → 1 ∈ ℕ)
38 id 22 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)
39 oveq2 7143 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
4039oveq2d 7151 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝐴 − (1 / 𝑛)) = (𝐴 − (1 / 1)))
4140breq1d 5040 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝐴 − (1 / 𝑛)) ≤ 𝐵 ↔ (𝐴 − (1 / 1)) ≤ 𝐵))
4241rspcva 3569 . . . . . . . . . . . . 13 ((1 ∈ ℕ ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → (𝐴 − (1 / 1)) ≤ 𝐵)
4337, 38, 42syl2anc 587 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → (𝐴 − (1 / 1)) ≤ 𝐵)
4443adantr 484 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ 𝐵)
45 simpr 488 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → 𝐵 = -∞)
4644, 45breqtrd 5056 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ -∞)
4746adantll 713 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ -∞)
48 1red 10631 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
49 ax-1ne0 10595 . . . . . . . . . . . . . . 15 1 ≠ 0
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
5148, 48, 50redivcld 11457 . . . . . . . . . . . . 13 (𝜑 → (1 / 1) ∈ ℝ)
524, 51resubcld 11057 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (1 / 1)) ∈ ℝ)
5352mnfltd 12507 . . . . . . . . . . 11 (𝜑 → -∞ < (𝐴 − (1 / 1)))
54 mnfxr 10687 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
5554a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
5652rexrd 10680 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (1 / 1)) ∈ ℝ*)
5755, 56xrltnled 41995 . . . . . . . . . . 11 (𝜑 → (-∞ < (𝐴 − (1 / 1)) ↔ ¬ (𝐴 − (1 / 1)) ≤ -∞))
5853, 57mpbid 235 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 − (1 / 1)) ≤ -∞)
5958ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = -∞) → ¬ (𝐴 − (1 / 1)) ≤ -∞)
6047, 59pm2.65da 816 . . . . . . . 8 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → ¬ 𝐵 = -∞)
6160neqned 2994 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐵 ≠ -∞)
6261adantr 484 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ -∞)
63 neqne 2995 . . . . . . 7 𝐵 = +∞ → 𝐵 ≠ +∞)
6463adantl 485 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ +∞)
6535, 62, 64xrred 41997 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ)
66 nfv 1915 . . . . . . . . . . 11 𝑛 𝐵 ∈ ℝ
671, 66nfan 1900 . . . . . . . . . 10 𝑛(𝜑𝐵 ∈ ℝ)
6813adantr 484 . . . . . . . . . 10 ((𝜑𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
69 simpr 488 . . . . . . . . . 10 ((𝜑𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
7067, 68, 69xrralrecnnle 42017 . . . . . . . . 9 ((𝜑𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
715adantlr 714 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
726adantl 485 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
7369adantr 484 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
7471, 72, 73lesubaddd 11226 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴 ≤ (𝐵 + (1 / 𝑛))))
7574bicomd 226 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐴 ≤ (𝐵 + (1 / 𝑛)) ↔ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
7667, 75ralbida 3194 . . . . . . . . 9 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
7770, 76bitr2d 283 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
7877biimpd 232 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
7978imp 410 . . . . . 6 (((𝜑𝐵 ∈ ℝ) ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐴𝐵)
8079an32s 651 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 ∈ ℝ) → 𝐴𝐵)
8165, 80syldan 594 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐴𝐵)
8234, 81pm2.61dan 812 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐴𝐵)
8382ex 416 . 2 (𝜑 → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
8425, 83impbid 215 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wnf 1785  wcel 2111  wne 2987  wral 3106   class class class wbr 5030  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  +crp 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fl 13157
This theorem is referenced by:  preimageiingt  43355
  Copyright terms: Public domain W3C validator