Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrralrecnnge Structured version   Visualization version   GIF version

Theorem xrralrecnnge 40253
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
xrralrecnnge.n 𝑛𝜑
xrralrecnnge.a (𝜑𝐴 ∈ ℝ)
xrralrecnnge.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrralrecnnge (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem xrralrecnnge
StepHypRef Expression
1 xrralrecnnge.n . . . . 5 𝑛𝜑
2 nfv 2009 . . . . 5 𝑛 𝐴𝐵
31, 2nfan 1998 . . . 4 𝑛(𝜑𝐴𝐵)
4 xrralrecnnge.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
54adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
6 nnrecre 11316 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
76adantl 473 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
85, 7resubcld 10714 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ)
98rexrd 10345 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
109adantlr 706 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ∈ ℝ*)
11 xrralrecnnge.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
1211ad2antrr 717 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
134rexrd 10345 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1413ad2antrr 717 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
15 nnrp 12044 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
1615rpreccld 12083 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1716adantl 473 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
185, 17ltsubrpd 12105 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
1918adantlr 706 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐴)
20 simplr 785 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴𝐵)
2110, 14, 12, 19, 20xrltletrd 12197 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) < 𝐵)
2210, 12, 21xrltled 12186 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐴 − (1 / 𝑛)) ≤ 𝐵)
2322ex 401 . . . 4 ((𝜑𝐴𝐵) → (𝑛 ∈ ℕ → (𝐴 − (1 / 𝑛)) ≤ 𝐵))
243, 23ralrimi 3104 . . 3 ((𝜑𝐴𝐵) → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)
2524ex 401 . 2 (𝜑 → (𝐴𝐵 → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
26 pnfxr 10348 . . . . . . . 8 +∞ ∈ ℝ*
2726a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
284ltpnfd 12158 . . . . . . 7 (𝜑𝐴 < +∞)
2913, 27, 28xrltled 12186 . . . . . 6 (𝜑𝐴 ≤ +∞)
3029ad2antrr 717 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
31 id 22 . . . . . . 7 (𝐵 = +∞ → 𝐵 = +∞)
3231eqcomd 2771 . . . . . 6 (𝐵 = +∞ → +∞ = 𝐵)
3332adantl 473 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → +∞ = 𝐵)
3430, 33breqtrd 4837 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = +∞) → 𝐴𝐵)
3511ad2antrr 717 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
36 1nn 11289 . . . . . . . . . . . . . 14 1 ∈ ℕ
3736a1i 11 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → 1 ∈ ℕ)
38 id 22 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)
39 oveq2 6852 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
4039oveq2d 6860 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝐴 − (1 / 𝑛)) = (𝐴 − (1 / 1)))
4140breq1d 4821 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝐴 − (1 / 𝑛)) ≤ 𝐵 ↔ (𝐴 − (1 / 1)) ≤ 𝐵))
4241rspcva 3460 . . . . . . . . . . . . 13 ((1 ∈ ℕ ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → (𝐴 − (1 / 1)) ≤ 𝐵)
4337, 38, 42syl2anc 579 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵 → (𝐴 − (1 / 1)) ≤ 𝐵)
4443adantr 472 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ 𝐵)
45 simpr 477 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → 𝐵 = -∞)
4644, 45breqtrd 4837 . . . . . . . . . 10 ((∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ -∞)
4746adantll 705 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = -∞) → (𝐴 − (1 / 1)) ≤ -∞)
48 1red 10296 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
49 ax-1ne0 10260 . . . . . . . . . . . . . . 15 1 ≠ 0
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
5148, 48, 50redivcld 11109 . . . . . . . . . . . . 13 (𝜑 → (1 / 1) ∈ ℝ)
524, 51resubcld 10714 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (1 / 1)) ∈ ℝ)
5352mnfltd 12161 . . . . . . . . . . 11 (𝜑 → -∞ < (𝐴 − (1 / 1)))
54 mnfxr 10352 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
5554a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
5652rexrd 10345 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (1 / 1)) ∈ ℝ*)
5755, 56xrltnled 40220 . . . . . . . . . . 11 (𝜑 → (-∞ < (𝐴 − (1 / 1)) ↔ ¬ (𝐴 − (1 / 1)) ≤ -∞))
5853, 57mpbid 223 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 − (1 / 1)) ≤ -∞)
5958ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 = -∞) → ¬ (𝐴 − (1 / 1)) ≤ -∞)
6047, 59pm2.65da 851 . . . . . . . 8 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → ¬ 𝐵 = -∞)
6160neqned 2944 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐵 ≠ -∞)
6261adantr 472 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ -∞)
63 neqne 2945 . . . . . . 7 𝐵 = +∞ → 𝐵 ≠ +∞)
6463adantl 473 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ≠ +∞)
6535, 62, 64xrred 40222 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ)
66 nfv 2009 . . . . . . . . . . 11 𝑛 𝐵 ∈ ℝ
671, 66nfan 1998 . . . . . . . . . 10 𝑛(𝜑𝐵 ∈ ℝ)
6813adantr 472 . . . . . . . . . 10 ((𝜑𝐵 ∈ ℝ) → 𝐴 ∈ ℝ*)
69 simpr 477 . . . . . . . . . 10 ((𝜑𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
7067, 68, 69xrralrecnnle 40243 . . . . . . . . 9 ((𝜑𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
715adantlr 706 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
726adantl 473 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
7369adantr 472 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
7471, 72, 73lesubaddd 10880 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴 ≤ (𝐵 + (1 / 𝑛))))
7574bicomd 214 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝐴 ≤ (𝐵 + (1 / 𝑛)) ↔ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
7667, 75ralbida 3129 . . . . . . . . 9 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
7770, 76bitr2d 271 . . . . . . . 8 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
7877biimpd 220 . . . . . . 7 ((𝜑𝐵 ∈ ℝ) → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
7978imp 395 . . . . . 6 (((𝜑𝐵 ∈ ℝ) ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐴𝐵)
8079an32s 642 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ 𝐵 ∈ ℝ) → 𝐴𝐵)
8165, 80syldan 585 . . . 4 (((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) ∧ ¬ 𝐵 = +∞) → 𝐴𝐵)
8234, 81pm2.61dan 847 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵) → 𝐴𝐵)
8382ex 401 . 2 (𝜑 → (∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵𝐴𝐵))
8425, 83impbid 203 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wnf 1878  wcel 2155  wne 2937  wral 3055   class class class wbr 4811  (class class class)co 6844  cr 10190  0cc0 10191  1c1 10192   + caddc 10194  +∞cpnf 10327  -∞cmnf 10328  *cxr 10329   < clt 10330  cle 10331  cmin 10522   / cdiv 10940  cn 11276  +crp 12031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-sup 8557  df-inf 8558  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-n0 11541  df-z 11627  df-uz 11890  df-q 11993  df-rp 12032  df-fl 12804
This theorem is referenced by:  preimageiingt  41573
  Copyright terms: Public domain W3C validator