MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkg2ld Structured version   Visualization version   GIF version

Theorem istrkg2ld 28469
Description: Property of fulfilling the lower dimension 2 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkg2ld (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐼   𝑥,𝑃,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem istrkg2ld
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 12651 . . . 4 2 ∈ ℤ
2 uzid 12894 . . . 4 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
31, 2ax-mp 5 . . 3 2 ∈ (ℤ‘2)
4 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
5 istrkg.d . . . 4 = (dist‘𝐺)
6 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
74, 5, 6istrkgld 28468 . . 3 ((𝐺𝑉 ∧ 2 ∈ (ℤ‘2)) → (𝐺DimTarskiG≥2 ↔ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
83, 7mpan2 691 . 2 (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
9 r19.41v 3188 . . . . 5 (∃𝑥𝑃 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃))
10 ancom 460 . . . . . 6 ((∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1110rexbii 3093 . . . . 5 (∃𝑥𝑃 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ ∃𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
12 ancom 460 . . . . 5 ((∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
139, 11, 123bitr3ri 302 . . . 4 ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1413exbii 1847 . . 3 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
15 rexcom4 3287 . . 3 (∃𝑥𝑃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
16 simpr 484 . . . . . . . . . 10 ((∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1716reximi 3083 . . . . . . . . 9 (∃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1817reximi 3083 . . . . . . . 8 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1918adantl 481 . . . . . . 7 ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
2019exlimiv 1929 . . . . . 6 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
2120adantl 481 . . . . 5 ((𝑥𝑃 ∧ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
22 1ex 11258 . . . . . . . . . 10 1 ∈ V
23 vex 3483 . . . . . . . . . 10 𝑥 ∈ V
2422, 23f1osn 6887 . . . . . . . . 9 {⟨1, 𝑥⟩}:{1}–1-1-onto→{𝑥}
25 f1of1 6846 . . . . . . . . 9 ({⟨1, 𝑥⟩}:{1}–1-1-onto→{𝑥} → {⟨1, 𝑥⟩}:{1}–1-1→{𝑥})
2624, 25mp1i 13 . . . . . . . 8 (𝑥𝑃 → {⟨1, 𝑥⟩}:{1}–1-1→{𝑥})
27 snssi 4807 . . . . . . . 8 (𝑥𝑃 → {𝑥} ⊆ 𝑃)
28 f1ss 6808 . . . . . . . 8 (({⟨1, 𝑥⟩}:{1}–1-1→{𝑥} ∧ {𝑥} ⊆ 𝑃) → {⟨1, 𝑥⟩}:{1}–1-1𝑃)
2926, 27, 28syl2anc 584 . . . . . . 7 (𝑥𝑃 → {⟨1, 𝑥⟩}:{1}–1-1𝑃)
30 fzo12sn 13788 . . . . . . . . . . . 12 (1..^2) = {1}
3130mpteq1i 5237 . . . . . . . . . . 11 (𝑗 ∈ (1..^2) ↦ 𝑥) = (𝑗 ∈ {1} ↦ 𝑥)
32 fmptsn 7188 . . . . . . . . . . . 12 ((1 ∈ V ∧ 𝑥 ∈ V) → {⟨1, 𝑥⟩} = (𝑗 ∈ {1} ↦ 𝑥))
3322, 23, 32mp2an 692 . . . . . . . . . . 11 {⟨1, 𝑥⟩} = (𝑗 ∈ {1} ↦ 𝑥)
3431, 33eqtr4i 2767 . . . . . . . . . 10 (𝑗 ∈ (1..^2) ↦ 𝑥) = {⟨1, 𝑥⟩}
3534a1i 11 . . . . . . . . 9 (⊤ → (𝑗 ∈ (1..^2) ↦ 𝑥) = {⟨1, 𝑥⟩})
3630a1i 11 . . . . . . . . 9 (⊤ → (1..^2) = {1})
37 eqidd 2737 . . . . . . . . 9 (⊤ → 𝑃 = 𝑃)
3835, 36, 37f1eq123d 6839 . . . . . . . 8 (⊤ → ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ↔ {⟨1, 𝑥⟩}:{1}–1-1𝑃))
3938mptru 1546 . . . . . . 7 ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ↔ {⟨1, 𝑥⟩}:{1}–1-1𝑃)
4029, 39sylibr 234 . . . . . 6 (𝑥𝑃 → (𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃)
41 ral0 4512 . . . . . . . . . 10 𝑗 ∈ ∅ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
42 fzo0 13724 . . . . . . . . . . 11 (2..^2) = ∅
4342raleqi 3323 . . . . . . . . . 10 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ↔ ∀𝑗 ∈ ∅ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)))
4441, 43mpbir 231 . . . . . . . . 9 𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
4544jctl 523 . . . . . . . 8 (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4645reximi 3083 . . . . . . 7 (∃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → ∃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4746reximi 3083 . . . . . 6 (∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
48 ovex 7465 . . . . . . . 8 (1..^2) ∈ V
4948mptex 7244 . . . . . . 7 (𝑗 ∈ (1..^2) ↦ 𝑥) ∈ V
50 f1eq1 6798 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → (𝑓:(1..^2)–1-1𝑃 ↔ (𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃))
51 nfmpt1 5249 . . . . . . . . . . . . 13 𝑗(𝑗 ∈ (1..^2) ↦ 𝑥)
5251nfeq2 2922 . . . . . . . . . . . 12 𝑗 𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥)
53 nfv 1913 . . . . . . . . . . . 12 𝑗(𝑦𝑃𝑧𝑃)
5452, 53nfan 1898 . . . . . . . . . . 11 𝑗(𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃))
55 simpll 766 . . . . . . . . . . . . . . 15 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → 𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥))
5655fveq1d 6907 . . . . . . . . . . . . . 14 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (𝑓‘1) = ((𝑗 ∈ (1..^2) ↦ 𝑥)‘1))
5756oveq1d 7447 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥))
5855fveq1d 6907 . . . . . . . . . . . . . 14 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (𝑓𝑗) = ((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗))
5958oveq1d 7447 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥))
6057, 59eqeq12d 2752 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥)))
6156oveq1d 7447 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦))
6258oveq1d 7447 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦))
6361, 62eqeq12d 2752 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦)))
6456oveq1d 7447 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧))
6558oveq1d 7447 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
6664, 65eqeq12d 2752 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)))
6760, 63, 663anbi123d 1437 . . . . . . . . . . 11 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))))
6854, 67ralbida 3269 . . . . . . . . . 10 ((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) → (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))))
6968anbi1d 631 . . . . . . . . 9 ((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) → ((∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
70692rexbidva 3219 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7150, 70anbi12d 632 . . . . . . 7 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
7249, 71spcev 3605 . . . . . 6 (((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7340, 47, 72syl2an 596 . . . . 5 ((𝑥𝑃 ∧ ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7421, 73impbida 800 . . . 4 (𝑥𝑃 → (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
7574rexbiia 3091 . . 3 (∃𝑥𝑃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
7614, 15, 753bitr2i 299 . 2 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
778, 76bitrdi 287 1 (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1539  wtru 1540  wex 1778  wcel 2107  wral 3060  wrex 3069  Vcvv 3479  wss 3950  c0 4332  {csn 4625  cop 4631   class class class wbr 5142  cmpt 5224  1-1wf1 6557  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  1c1 11157  2c2 12322  cz 12615  cuz 12879  ..^cfzo 13695  Basecbs 17248  distcds 17307  DimTarskiGcstrkgld 28440  Itvcitv 28442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-trkgld 28461
This theorem is referenced by:  axtglowdim2  28479  tgdim01  28516
  Copyright terms: Public domain W3C validator