MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkg2ld Structured version   Visualization version   GIF version

Theorem istrkg2ld 27402
Description: Property of fulfilling the lower dimension 2 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkg2ld (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐼   𝑥,𝑃,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem istrkg2ld
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 12535 . . . 4 2 ∈ ℤ
2 uzid 12778 . . . 4 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
31, 2ax-mp 5 . . 3 2 ∈ (ℤ‘2)
4 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
5 istrkg.d . . . 4 = (dist‘𝐺)
6 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
74, 5, 6istrkgld 27401 . . 3 ((𝐺𝑉 ∧ 2 ∈ (ℤ‘2)) → (𝐺DimTarskiG≥2 ↔ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
83, 7mpan2 689 . 2 (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
9 r19.41v 3185 . . . . 5 (∃𝑥𝑃 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃))
10 ancom 461 . . . . . 6 ((∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1110rexbii 3097 . . . . 5 (∃𝑥𝑃 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ ∃𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
12 ancom 461 . . . . 5 ((∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
139, 11, 123bitr3ri 301 . . . 4 ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1413exbii 1850 . . 3 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
15 rexcom4 3271 . . 3 (∃𝑥𝑃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
16 simpr 485 . . . . . . . . . 10 ((∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1716reximi 3087 . . . . . . . . 9 (∃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1817reximi 3087 . . . . . . . 8 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1918adantl 482 . . . . . . 7 ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
2019exlimiv 1933 . . . . . 6 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
2120adantl 482 . . . . 5 ((𝑥𝑃 ∧ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
22 1ex 11151 . . . . . . . . . 10 1 ∈ V
23 vex 3449 . . . . . . . . . 10 𝑥 ∈ V
2422, 23f1osn 6824 . . . . . . . . 9 {⟨1, 𝑥⟩}:{1}–1-1-onto→{𝑥}
25 f1of1 6783 . . . . . . . . 9 ({⟨1, 𝑥⟩}:{1}–1-1-onto→{𝑥} → {⟨1, 𝑥⟩}:{1}–1-1→{𝑥})
2624, 25mp1i 13 . . . . . . . 8 (𝑥𝑃 → {⟨1, 𝑥⟩}:{1}–1-1→{𝑥})
27 snssi 4768 . . . . . . . 8 (𝑥𝑃 → {𝑥} ⊆ 𝑃)
28 f1ss 6744 . . . . . . . 8 (({⟨1, 𝑥⟩}:{1}–1-1→{𝑥} ∧ {𝑥} ⊆ 𝑃) → {⟨1, 𝑥⟩}:{1}–1-1𝑃)
2926, 27, 28syl2anc 584 . . . . . . 7 (𝑥𝑃 → {⟨1, 𝑥⟩}:{1}–1-1𝑃)
30 fzo12sn 13655 . . . . . . . . . . . 12 (1..^2) = {1}
3130mpteq1i 5201 . . . . . . . . . . 11 (𝑗 ∈ (1..^2) ↦ 𝑥) = (𝑗 ∈ {1} ↦ 𝑥)
32 fmptsn 7113 . . . . . . . . . . . 12 ((1 ∈ V ∧ 𝑥 ∈ V) → {⟨1, 𝑥⟩} = (𝑗 ∈ {1} ↦ 𝑥))
3322, 23, 32mp2an 690 . . . . . . . . . . 11 {⟨1, 𝑥⟩} = (𝑗 ∈ {1} ↦ 𝑥)
3431, 33eqtr4i 2767 . . . . . . . . . 10 (𝑗 ∈ (1..^2) ↦ 𝑥) = {⟨1, 𝑥⟩}
3534a1i 11 . . . . . . . . 9 (⊤ → (𝑗 ∈ (1..^2) ↦ 𝑥) = {⟨1, 𝑥⟩})
3630a1i 11 . . . . . . . . 9 (⊤ → (1..^2) = {1})
37 eqidd 2737 . . . . . . . . 9 (⊤ → 𝑃 = 𝑃)
3835, 36, 37f1eq123d 6776 . . . . . . . 8 (⊤ → ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ↔ {⟨1, 𝑥⟩}:{1}–1-1𝑃))
3938mptru 1548 . . . . . . 7 ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ↔ {⟨1, 𝑥⟩}:{1}–1-1𝑃)
4029, 39sylibr 233 . . . . . 6 (𝑥𝑃 → (𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃)
41 ral0 4470 . . . . . . . . . 10 𝑗 ∈ ∅ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
42 fzo0 13596 . . . . . . . . . . 11 (2..^2) = ∅
4342raleqi 3311 . . . . . . . . . 10 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ↔ ∀𝑗 ∈ ∅ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)))
4441, 43mpbir 230 . . . . . . . . 9 𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
4544jctl 524 . . . . . . . 8 (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4645reximi 3087 . . . . . . 7 (∃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → ∃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4746reximi 3087 . . . . . 6 (∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
48 ovex 7390 . . . . . . . 8 (1..^2) ∈ V
4948mptex 7173 . . . . . . 7 (𝑗 ∈ (1..^2) ↦ 𝑥) ∈ V
50 f1eq1 6733 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → (𝑓:(1..^2)–1-1𝑃 ↔ (𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃))
51 nfmpt1 5213 . . . . . . . . . . . . 13 𝑗(𝑗 ∈ (1..^2) ↦ 𝑥)
5251nfeq2 2924 . . . . . . . . . . . 12 𝑗 𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥)
53 nfv 1917 . . . . . . . . . . . 12 𝑗(𝑦𝑃𝑧𝑃)
5452, 53nfan 1902 . . . . . . . . . . 11 𝑗(𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃))
55 simpll 765 . . . . . . . . . . . . . . 15 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → 𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥))
5655fveq1d 6844 . . . . . . . . . . . . . 14 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (𝑓‘1) = ((𝑗 ∈ (1..^2) ↦ 𝑥)‘1))
5756oveq1d 7372 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥))
5855fveq1d 6844 . . . . . . . . . . . . . 14 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (𝑓𝑗) = ((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗))
5958oveq1d 7372 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥))
6057, 59eqeq12d 2752 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥)))
6156oveq1d 7372 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦))
6258oveq1d 7372 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦))
6361, 62eqeq12d 2752 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦)))
6456oveq1d 7372 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧))
6558oveq1d 7372 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
6664, 65eqeq12d 2752 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)))
6760, 63, 663anbi123d 1436 . . . . . . . . . . 11 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))))
6854, 67ralbida 3253 . . . . . . . . . 10 ((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) → (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))))
6968anbi1d 630 . . . . . . . . 9 ((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) → ((∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
70692rexbidva 3211 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7150, 70anbi12d 631 . . . . . . 7 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
7249, 71spcev 3565 . . . . . 6 (((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7340, 47, 72syl2an 596 . . . . 5 ((𝑥𝑃 ∧ ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7421, 73impbida 799 . . . 4 (𝑥𝑃 → (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
7574rexbiia 3095 . . 3 (∃𝑥𝑃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
7614, 15, 753bitr2i 298 . 2 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
778, 76bitrdi 286 1 (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1086  w3a 1087   = wceq 1541  wtru 1542  wex 1781  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  wss 3910  c0 4282  {csn 4586  cop 4592   class class class wbr 5105  cmpt 5188  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  1c1 11052  2c2 12208  cz 12499  cuz 12763  ..^cfzo 13567  Basecbs 17083  distcds 17142  DimTarskiGcstrkgld 27373  Itvcitv 27375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-trkgld 27394
This theorem is referenced by:  axtglowdim2  27412  tgdim01  27449
  Copyright terms: Public domain W3C validator