MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkg2ld Structured version   Visualization version   GIF version

Theorem istrkg2ld 26821
Description: Property of fulfilling the lower dimension 2 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkg2ld (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐼   𝑥,𝑃,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem istrkg2ld
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 12352 . . . 4 2 ∈ ℤ
2 uzid 12597 . . . 4 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
31, 2ax-mp 5 . . 3 2 ∈ (ℤ‘2)
4 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
5 istrkg.d . . . 4 = (dist‘𝐺)
6 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
74, 5, 6istrkgld 26820 . . 3 ((𝐺𝑉 ∧ 2 ∈ (ℤ‘2)) → (𝐺DimTarskiG≥2 ↔ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
83, 7mpan2 688 . 2 (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
9 r19.41v 3276 . . . . 5 (∃𝑥𝑃 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃))
10 ancom 461 . . . . . 6 ((∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1110rexbii 3181 . . . . 5 (∃𝑥𝑃 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ ∃𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
12 ancom 461 . . . . 5 ((∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
139, 11, 123bitr3ri 302 . . . 4 ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1413exbii 1850 . . 3 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
15 rexcom4 3233 . . 3 (∃𝑥𝑃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
16 simpr 485 . . . . . . . . . 10 ((∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1716reximi 3178 . . . . . . . . 9 (∃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1817reximi 3178 . . . . . . . 8 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1918adantl 482 . . . . . . 7 ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
2019exlimiv 1933 . . . . . 6 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
2120adantl 482 . . . . 5 ((𝑥𝑃 ∧ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
22 1ex 10971 . . . . . . . . . 10 1 ∈ V
23 vex 3436 . . . . . . . . . 10 𝑥 ∈ V
2422, 23f1osn 6756 . . . . . . . . 9 {⟨1, 𝑥⟩}:{1}–1-1-onto→{𝑥}
25 f1of1 6715 . . . . . . . . 9 ({⟨1, 𝑥⟩}:{1}–1-1-onto→{𝑥} → {⟨1, 𝑥⟩}:{1}–1-1→{𝑥})
2624, 25mp1i 13 . . . . . . . 8 (𝑥𝑃 → {⟨1, 𝑥⟩}:{1}–1-1→{𝑥})
27 snssi 4741 . . . . . . . 8 (𝑥𝑃 → {𝑥} ⊆ 𝑃)
28 f1ss 6676 . . . . . . . 8 (({⟨1, 𝑥⟩}:{1}–1-1→{𝑥} ∧ {𝑥} ⊆ 𝑃) → {⟨1, 𝑥⟩}:{1}–1-1𝑃)
2926, 27, 28syl2anc 584 . . . . . . 7 (𝑥𝑃 → {⟨1, 𝑥⟩}:{1}–1-1𝑃)
30 fzo12sn 13470 . . . . . . . . . . . 12 (1..^2) = {1}
3130mpteq1i 5170 . . . . . . . . . . 11 (𝑗 ∈ (1..^2) ↦ 𝑥) = (𝑗 ∈ {1} ↦ 𝑥)
32 fmptsn 7039 . . . . . . . . . . . 12 ((1 ∈ V ∧ 𝑥 ∈ V) → {⟨1, 𝑥⟩} = (𝑗 ∈ {1} ↦ 𝑥))
3322, 23, 32mp2an 689 . . . . . . . . . . 11 {⟨1, 𝑥⟩} = (𝑗 ∈ {1} ↦ 𝑥)
3431, 33eqtr4i 2769 . . . . . . . . . 10 (𝑗 ∈ (1..^2) ↦ 𝑥) = {⟨1, 𝑥⟩}
3534a1i 11 . . . . . . . . 9 (⊤ → (𝑗 ∈ (1..^2) ↦ 𝑥) = {⟨1, 𝑥⟩})
3630a1i 11 . . . . . . . . 9 (⊤ → (1..^2) = {1})
37 eqidd 2739 . . . . . . . . 9 (⊤ → 𝑃 = 𝑃)
3835, 36, 37f1eq123d 6708 . . . . . . . 8 (⊤ → ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ↔ {⟨1, 𝑥⟩}:{1}–1-1𝑃))
3938mptru 1546 . . . . . . 7 ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ↔ {⟨1, 𝑥⟩}:{1}–1-1𝑃)
4029, 39sylibr 233 . . . . . 6 (𝑥𝑃 → (𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃)
41 ral0 4443 . . . . . . . . . 10 𝑗 ∈ ∅ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
42 fzo0 13411 . . . . . . . . . . 11 (2..^2) = ∅
4342raleqi 3346 . . . . . . . . . 10 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ↔ ∀𝑗 ∈ ∅ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)))
4441, 43mpbir 230 . . . . . . . . 9 𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
4544jctl 524 . . . . . . . 8 (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4645reximi 3178 . . . . . . 7 (∃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → ∃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4746reximi 3178 . . . . . 6 (∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
48 ovex 7308 . . . . . . . 8 (1..^2) ∈ V
4948mptex 7099 . . . . . . 7 (𝑗 ∈ (1..^2) ↦ 𝑥) ∈ V
50 f1eq1 6665 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → (𝑓:(1..^2)–1-1𝑃 ↔ (𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃))
51 nfmpt1 5182 . . . . . . . . . . . . 13 𝑗(𝑗 ∈ (1..^2) ↦ 𝑥)
5251nfeq2 2924 . . . . . . . . . . . 12 𝑗 𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥)
53 nfv 1917 . . . . . . . . . . . 12 𝑗(𝑦𝑃𝑧𝑃)
5452, 53nfan 1902 . . . . . . . . . . 11 𝑗(𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃))
55 simpll 764 . . . . . . . . . . . . . . 15 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → 𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥))
5655fveq1d 6776 . . . . . . . . . . . . . 14 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (𝑓‘1) = ((𝑗 ∈ (1..^2) ↦ 𝑥)‘1))
5756oveq1d 7290 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥))
5855fveq1d 6776 . . . . . . . . . . . . . 14 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (𝑓𝑗) = ((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗))
5958oveq1d 7290 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥))
6057, 59eqeq12d 2754 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥)))
6156oveq1d 7290 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦))
6258oveq1d 7290 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦))
6361, 62eqeq12d 2754 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦)))
6456oveq1d 7290 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧))
6558oveq1d 7290 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
6664, 65eqeq12d 2754 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)))
6760, 63, 663anbi123d 1435 . . . . . . . . . . 11 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))))
6854, 67ralbida 3159 . . . . . . . . . 10 ((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) → (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))))
6968anbi1d 630 . . . . . . . . 9 ((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) → ((∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
70692rexbidva 3228 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7150, 70anbi12d 631 . . . . . . 7 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
7249, 71spcev 3545 . . . . . 6 (((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7340, 47, 72syl2an 596 . . . . 5 ((𝑥𝑃 ∧ ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7421, 73impbida 798 . . . 4 (𝑥𝑃 → (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
7574rexbiia 3180 . . 3 (∃𝑥𝑃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
7614, 15, 753bitr2i 299 . 2 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
778, 76bitrdi 287 1 (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1539  wtru 1540  wex 1782  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  1c1 10872  2c2 12028  cz 12319  cuz 12582  ..^cfzo 13382  Basecbs 16912  distcds 16971  DimTarskiGcstrkgld 26792  Itvcitv 26794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-trkgld 26813
This theorem is referenced by:  axtglowdim2  26831  tgdim01  26868
  Copyright terms: Public domain W3C validator