MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkg2ld Structured version   Visualization version   GIF version

Theorem istrkg2ld 28387
Description: Property of fulfilling the lower dimension 2 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkg2ld (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐼   𝑥,𝑃,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem istrkg2ld
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 12565 . . . 4 2 ∈ ℤ
2 uzid 12808 . . . 4 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
31, 2ax-mp 5 . . 3 2 ∈ (ℤ‘2)
4 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
5 istrkg.d . . . 4 = (dist‘𝐺)
6 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
74, 5, 6istrkgld 28386 . . 3 ((𝐺𝑉 ∧ 2 ∈ (ℤ‘2)) → (𝐺DimTarskiG≥2 ↔ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
83, 7mpan2 691 . 2 (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
9 r19.41v 3167 . . . . 5 (∃𝑥𝑃 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃))
10 ancom 460 . . . . . 6 ((∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1110rexbii 3076 . . . . 5 (∃𝑥𝑃 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ ∃𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
12 ancom 460 . . . . 5 ((∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
139, 11, 123bitr3ri 302 . . . 4 ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1413exbii 1848 . . 3 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
15 rexcom4 3264 . . 3 (∃𝑥𝑃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
16 simpr 484 . . . . . . . . . 10 ((∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1716reximi 3067 . . . . . . . . 9 (∃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1817reximi 3067 . . . . . . . 8 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1918adantl 481 . . . . . . 7 ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
2019exlimiv 1930 . . . . . 6 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
2120adantl 481 . . . . 5 ((𝑥𝑃 ∧ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
22 1ex 11170 . . . . . . . . . 10 1 ∈ V
23 vex 3451 . . . . . . . . . 10 𝑥 ∈ V
2422, 23f1osn 6840 . . . . . . . . 9 {⟨1, 𝑥⟩}:{1}–1-1-onto→{𝑥}
25 f1of1 6799 . . . . . . . . 9 ({⟨1, 𝑥⟩}:{1}–1-1-onto→{𝑥} → {⟨1, 𝑥⟩}:{1}–1-1→{𝑥})
2624, 25mp1i 13 . . . . . . . 8 (𝑥𝑃 → {⟨1, 𝑥⟩}:{1}–1-1→{𝑥})
27 snssi 4772 . . . . . . . 8 (𝑥𝑃 → {𝑥} ⊆ 𝑃)
28 f1ss 6761 . . . . . . . 8 (({⟨1, 𝑥⟩}:{1}–1-1→{𝑥} ∧ {𝑥} ⊆ 𝑃) → {⟨1, 𝑥⟩}:{1}–1-1𝑃)
2926, 27, 28syl2anc 584 . . . . . . 7 (𝑥𝑃 → {⟨1, 𝑥⟩}:{1}–1-1𝑃)
30 fzo12sn 13709 . . . . . . . . . . . 12 (1..^2) = {1}
3130mpteq1i 5198 . . . . . . . . . . 11 (𝑗 ∈ (1..^2) ↦ 𝑥) = (𝑗 ∈ {1} ↦ 𝑥)
32 fmptsn 7141 . . . . . . . . . . . 12 ((1 ∈ V ∧ 𝑥 ∈ V) → {⟨1, 𝑥⟩} = (𝑗 ∈ {1} ↦ 𝑥))
3322, 23, 32mp2an 692 . . . . . . . . . . 11 {⟨1, 𝑥⟩} = (𝑗 ∈ {1} ↦ 𝑥)
3431, 33eqtr4i 2755 . . . . . . . . . 10 (𝑗 ∈ (1..^2) ↦ 𝑥) = {⟨1, 𝑥⟩}
3534a1i 11 . . . . . . . . 9 (⊤ → (𝑗 ∈ (1..^2) ↦ 𝑥) = {⟨1, 𝑥⟩})
3630a1i 11 . . . . . . . . 9 (⊤ → (1..^2) = {1})
37 eqidd 2730 . . . . . . . . 9 (⊤ → 𝑃 = 𝑃)
3835, 36, 37f1eq123d 6792 . . . . . . . 8 (⊤ → ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ↔ {⟨1, 𝑥⟩}:{1}–1-1𝑃))
3938mptru 1547 . . . . . . 7 ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ↔ {⟨1, 𝑥⟩}:{1}–1-1𝑃)
4029, 39sylibr 234 . . . . . 6 (𝑥𝑃 → (𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃)
41 ral0 4476 . . . . . . . . . 10 𝑗 ∈ ∅ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
42 fzo0 13644 . . . . . . . . . . 11 (2..^2) = ∅
4342raleqi 3297 . . . . . . . . . 10 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ↔ ∀𝑗 ∈ ∅ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)))
4441, 43mpbir 231 . . . . . . . . 9 𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
4544jctl 523 . . . . . . . 8 (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4645reximi 3067 . . . . . . 7 (∃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → ∃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4746reximi 3067 . . . . . 6 (∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
48 ovex 7420 . . . . . . . 8 (1..^2) ∈ V
4948mptex 7197 . . . . . . 7 (𝑗 ∈ (1..^2) ↦ 𝑥) ∈ V
50 f1eq1 6751 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → (𝑓:(1..^2)–1-1𝑃 ↔ (𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃))
51 nfmpt1 5206 . . . . . . . . . . . . 13 𝑗(𝑗 ∈ (1..^2) ↦ 𝑥)
5251nfeq2 2909 . . . . . . . . . . . 12 𝑗 𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥)
53 nfv 1914 . . . . . . . . . . . 12 𝑗(𝑦𝑃𝑧𝑃)
5452, 53nfan 1899 . . . . . . . . . . 11 𝑗(𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃))
55 simpll 766 . . . . . . . . . . . . . . 15 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → 𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥))
5655fveq1d 6860 . . . . . . . . . . . . . 14 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (𝑓‘1) = ((𝑗 ∈ (1..^2) ↦ 𝑥)‘1))
5756oveq1d 7402 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥))
5855fveq1d 6860 . . . . . . . . . . . . . 14 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (𝑓𝑗) = ((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗))
5958oveq1d 7402 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥))
6057, 59eqeq12d 2745 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥)))
6156oveq1d 7402 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦))
6258oveq1d 7402 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦))
6361, 62eqeq12d 2745 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦)))
6456oveq1d 7402 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧))
6558oveq1d 7402 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
6664, 65eqeq12d 2745 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)))
6760, 63, 663anbi123d 1438 . . . . . . . . . . 11 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))))
6854, 67ralbida 3248 . . . . . . . . . 10 ((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) → (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))))
6968anbi1d 631 . . . . . . . . 9 ((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) → ((∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
70692rexbidva 3200 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7150, 70anbi12d 632 . . . . . . 7 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
7249, 71spcev 3572 . . . . . 6 (((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7340, 47, 72syl2an 596 . . . . 5 ((𝑥𝑃 ∧ ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7421, 73impbida 800 . . . 4 (𝑥𝑃 → (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
7574rexbiia 3074 . . 3 (∃𝑥𝑃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
7614, 15, 753bitr2i 299 . 2 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
778, 76bitrdi 287 1 (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wtru 1541  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  1c1 11069  2c2 12241  cz 12529  cuz 12793  ..^cfzo 13615  Basecbs 17179  distcds 17229  DimTarskiGcstrkgld 28358  Itvcitv 28360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-trkgld 28379
This theorem is referenced by:  axtglowdim2  28397  tgdim01  28434
  Copyright terms: Public domain W3C validator