Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nadd1suc Structured version   Visualization version   GIF version

Theorem nadd1suc 42608
Description: Natural addition with 1 is same as successor. (Contributed by RP, 31-Dec-2024.)
Assertion
Ref Expression
nadd1suc (𝐴 ∈ On → (𝐴 +no 1o) = suc 𝐴)

Proof of Theorem nadd1suc
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7419 . . 3 (𝑎 = 𝑏 → (𝑎 +no 1o) = (𝑏 +no 1o))
2 suceq 6430 . . 3 (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏)
31, 2eqeq12d 2747 . 2 (𝑎 = 𝑏 → ((𝑎 +no 1o) = suc 𝑎 ↔ (𝑏 +no 1o) = suc 𝑏))
4 oveq1 7419 . . 3 (𝑎 = 𝐴 → (𝑎 +no 1o) = (𝐴 +no 1o))
5 suceq 6430 . . 3 (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴)
64, 5eqeq12d 2747 . 2 (𝑎 = 𝐴 → ((𝑎 +no 1o) = suc 𝑎 ↔ (𝐴 +no 1o) = suc 𝐴))
7 naddrid 8688 . . . . . . . . . 10 (𝑎 ∈ On → (𝑎 +no ∅) = 𝑎)
87eleq1d 2817 . . . . . . . . 9 (𝑎 ∈ On → ((𝑎 +no ∅) ∈ 𝑥𝑎𝑥))
98anbi1d 629 . . . . . . . 8 (𝑎 ∈ On → (((𝑎 +no ∅) ∈ 𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥) ↔ (𝑎𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
109ad2antrr 723 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑥 ∈ On) → (((𝑎 +no ∅) ∈ 𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥) ↔ (𝑎𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
11 df1o2 8479 . . . . . . . . . . . 12 1o = {∅}
1211raleqi 3322 . . . . . . . . . . 11 (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ {∅} (𝑎 +no 𝑦) ∈ 𝑥)
13 0ex 5307 . . . . . . . . . . . 12 ∅ ∈ V
14 oveq2 7420 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑎 +no 𝑦) = (𝑎 +no ∅))
1514eleq1d 2817 . . . . . . . . . . . 12 (𝑦 = ∅ → ((𝑎 +no 𝑦) ∈ 𝑥 ↔ (𝑎 +no ∅) ∈ 𝑥))
1613, 15ralsn 4685 . . . . . . . . . . 11 (∀𝑦 ∈ {∅} (𝑎 +no 𝑦) ∈ 𝑥 ↔ (𝑎 +no ∅) ∈ 𝑥)
1712, 16bitri 275 . . . . . . . . . 10 (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ↔ (𝑎 +no ∅) ∈ 𝑥)
1817a1i 11 . . . . . . . . 9 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ↔ (𝑎 +no ∅) ∈ 𝑥))
19 oveq1 7419 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝑦 +no 1o) = (𝑏 +no 1o))
2019eleq1d 2817 . . . . . . . . . . 11 (𝑦 = 𝑏 → ((𝑦 +no 1o) ∈ 𝑥 ↔ (𝑏 +no 1o) ∈ 𝑥))
2120cbvralvw 3233 . . . . . . . . . 10 (∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥 ↔ ∀𝑏𝑎 (𝑏 +no 1o) ∈ 𝑥)
22 nfv 1916 . . . . . . . . . . . 12 𝑏 𝑎 ∈ On
23 nfra1 3280 . . . . . . . . . . . 12 𝑏𝑏𝑎 (𝑏 +no 1o) = suc 𝑏
2422, 23nfan 1901 . . . . . . . . . . 11 𝑏(𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏)
25 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏)
2625r19.21bi 3247 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑏𝑎) → (𝑏 +no 1o) = suc 𝑏)
2726eleq1d 2817 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑏𝑎) → ((𝑏 +no 1o) ∈ 𝑥 ↔ suc 𝑏𝑥))
2824, 27ralbida 3266 . . . . . . . . . 10 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → (∀𝑏𝑎 (𝑏 +no 1o) ∈ 𝑥 ↔ ∀𝑏𝑎 suc 𝑏𝑥))
2921, 28bitrid 283 . . . . . . . . 9 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → (∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥 ↔ ∀𝑏𝑎 suc 𝑏𝑥))
3018, 29anbi12d 630 . . . . . . . 8 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → ((∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥) ↔ ((𝑎 +no ∅) ∈ 𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
3130adantr 480 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑥 ∈ On) → ((∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥) ↔ ((𝑎 +no ∅) ∈ 𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
32 onelon 6389 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑏𝑎) → 𝑏 ∈ On)
3332ad4ant13 748 . . . . . . . . . . . . . 14 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → 𝑏 ∈ On)
34 onsuc 7803 . . . . . . . . . . . . . 14 (𝑏 ∈ On → suc 𝑏 ∈ On)
3533, 34syl 17 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → suc 𝑏 ∈ On)
36 simpllr 773 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → 𝑥 ∈ On)
3735, 36jca 511 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → (suc 𝑏 ∈ On ∧ 𝑥 ∈ On))
38 eloni 6374 . . . . . . . . . . . . . . 15 (𝑎 ∈ On → Ord 𝑎)
3938ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → Ord 𝑎)
40 simplr 766 . . . . . . . . . . . . . 14 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → 𝑏𝑎)
41 ordsucss 7810 . . . . . . . . . . . . . 14 (Ord 𝑎 → (𝑏𝑎 → suc 𝑏𝑎))
4239, 40, 41sylc 65 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → suc 𝑏𝑎)
43 simpr 484 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → 𝑎𝑥)
4442, 43jca 511 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → (suc 𝑏𝑎𝑎𝑥))
45 ontr2 6411 . . . . . . . . . . . 12 ((suc 𝑏 ∈ On ∧ 𝑥 ∈ On) → ((suc 𝑏𝑎𝑎𝑥) → suc 𝑏𝑥))
4637, 44, 45sylc 65 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → suc 𝑏𝑥)
4746ex 412 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) → (𝑎𝑥 → suc 𝑏𝑥))
4847ralrimdva 3153 . . . . . . . . 9 ((𝑎 ∈ On ∧ 𝑥 ∈ On) → (𝑎𝑥 → ∀𝑏𝑎 suc 𝑏𝑥))
4948pm4.71d 561 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑥 ∈ On) → (𝑎𝑥 ↔ (𝑎𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
5049adantlr 712 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑥 ∈ On) → (𝑎𝑥 ↔ (𝑎𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
5110, 31, 503bitr4d 311 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑥 ∈ On) → ((∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥) ↔ 𝑎𝑥))
5251rabbidva 3438 . . . . 5 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → {𝑥 ∈ On ∣ (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
5352inteqd 4955 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → {𝑥 ∈ On ∣ (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
54 1on 8484 . . . . . 6 1o ∈ On
55 naddov2 8684 . . . . . 6 ((𝑎 ∈ On ∧ 1o ∈ On) → (𝑎 +no 1o) = {𝑥 ∈ On ∣ (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥)})
5654, 55mpan2 688 . . . . 5 (𝑎 ∈ On → (𝑎 +no 1o) = {𝑥 ∈ On ∣ (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥)})
5756adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → (𝑎 +no 1o) = {𝑥 ∈ On ∣ (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥)})
58 onsucmin 7813 . . . . 5 (𝑎 ∈ On → suc 𝑎 = {𝑥 ∈ On ∣ 𝑎𝑥})
5958adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → suc 𝑎 = {𝑥 ∈ On ∣ 𝑎𝑥})
6053, 57, 593eqtr4d 2781 . . 3 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → (𝑎 +no 1o) = suc 𝑎)
6160ex 412 . 2 (𝑎 ∈ On → (∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏 → (𝑎 +no 1o) = suc 𝑎))
623, 6, 61tfis3 7851 1 (𝐴 ∈ On → (𝐴 +no 1o) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  {crab 3431  wss 3948  c0 4322  {csn 4628   cint 4950  Ord word 6363  Oncon0 6364  suc csuc 6366  (class class class)co 7412  1oc1o 8465   +no cnadd 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-frecs 8272  df-1o 8472  df-nadd 8671
This theorem is referenced by:  naddass1  42610
  Copyright terms: Public domain W3C validator