Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nadd1suc Structured version   Visualization version   GIF version

Theorem nadd1suc 43354
Description: Natural addition with 1 is same as successor. (Contributed by RP, 31-Dec-2024.)
Assertion
Ref Expression
nadd1suc (𝐴 ∈ On → (𝐴 +no 1o) = suc 𝐴)

Proof of Theorem nadd1suc
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . 3 (𝑎 = 𝑏 → (𝑎 +no 1o) = (𝑏 +no 1o))
2 suceq 6461 . . 3 (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏)
31, 2eqeq12d 2756 . 2 (𝑎 = 𝑏 → ((𝑎 +no 1o) = suc 𝑎 ↔ (𝑏 +no 1o) = suc 𝑏))
4 oveq1 7455 . . 3 (𝑎 = 𝐴 → (𝑎 +no 1o) = (𝐴 +no 1o))
5 suceq 6461 . . 3 (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴)
64, 5eqeq12d 2756 . 2 (𝑎 = 𝐴 → ((𝑎 +no 1o) = suc 𝑎 ↔ (𝐴 +no 1o) = suc 𝐴))
7 naddrid 8739 . . . . . . . . . 10 (𝑎 ∈ On → (𝑎 +no ∅) = 𝑎)
87eleq1d 2829 . . . . . . . . 9 (𝑎 ∈ On → ((𝑎 +no ∅) ∈ 𝑥𝑎𝑥))
98anbi1d 630 . . . . . . . 8 (𝑎 ∈ On → (((𝑎 +no ∅) ∈ 𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥) ↔ (𝑎𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
109ad2antrr 725 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑥 ∈ On) → (((𝑎 +no ∅) ∈ 𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥) ↔ (𝑎𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
11 df1o2 8529 . . . . . . . . . . . 12 1o = {∅}
1211raleqi 3332 . . . . . . . . . . 11 (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ {∅} (𝑎 +no 𝑦) ∈ 𝑥)
13 0ex 5325 . . . . . . . . . . . 12 ∅ ∈ V
14 oveq2 7456 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑎 +no 𝑦) = (𝑎 +no ∅))
1514eleq1d 2829 . . . . . . . . . . . 12 (𝑦 = ∅ → ((𝑎 +no 𝑦) ∈ 𝑥 ↔ (𝑎 +no ∅) ∈ 𝑥))
1613, 15ralsn 4705 . . . . . . . . . . 11 (∀𝑦 ∈ {∅} (𝑎 +no 𝑦) ∈ 𝑥 ↔ (𝑎 +no ∅) ∈ 𝑥)
1712, 16bitri 275 . . . . . . . . . 10 (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ↔ (𝑎 +no ∅) ∈ 𝑥)
1817a1i 11 . . . . . . . . 9 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ↔ (𝑎 +no ∅) ∈ 𝑥))
19 oveq1 7455 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝑦 +no 1o) = (𝑏 +no 1o))
2019eleq1d 2829 . . . . . . . . . . 11 (𝑦 = 𝑏 → ((𝑦 +no 1o) ∈ 𝑥 ↔ (𝑏 +no 1o) ∈ 𝑥))
2120cbvralvw 3243 . . . . . . . . . 10 (∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥 ↔ ∀𝑏𝑎 (𝑏 +no 1o) ∈ 𝑥)
22 nfv 1913 . . . . . . . . . . . 12 𝑏 𝑎 ∈ On
23 nfra1 3290 . . . . . . . . . . . 12 𝑏𝑏𝑎 (𝑏 +no 1o) = suc 𝑏
2422, 23nfan 1898 . . . . . . . . . . 11 𝑏(𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏)
25 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏)
2625r19.21bi 3257 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑏𝑎) → (𝑏 +no 1o) = suc 𝑏)
2726eleq1d 2829 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑏𝑎) → ((𝑏 +no 1o) ∈ 𝑥 ↔ suc 𝑏𝑥))
2824, 27ralbida 3276 . . . . . . . . . 10 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → (∀𝑏𝑎 (𝑏 +no 1o) ∈ 𝑥 ↔ ∀𝑏𝑎 suc 𝑏𝑥))
2921, 28bitrid 283 . . . . . . . . 9 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → (∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥 ↔ ∀𝑏𝑎 suc 𝑏𝑥))
3018, 29anbi12d 631 . . . . . . . 8 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → ((∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥) ↔ ((𝑎 +no ∅) ∈ 𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
3130adantr 480 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑥 ∈ On) → ((∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥) ↔ ((𝑎 +no ∅) ∈ 𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
32 onelon 6420 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑏𝑎) → 𝑏 ∈ On)
3332ad4ant13 750 . . . . . . . . . . . . . 14 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → 𝑏 ∈ On)
34 onsuc 7847 . . . . . . . . . . . . . 14 (𝑏 ∈ On → suc 𝑏 ∈ On)
3533, 34syl 17 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → suc 𝑏 ∈ On)
36 simpllr 775 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → 𝑥 ∈ On)
3735, 36jca 511 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → (suc 𝑏 ∈ On ∧ 𝑥 ∈ On))
38 eloni 6405 . . . . . . . . . . . . . . 15 (𝑎 ∈ On → Ord 𝑎)
3938ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → Ord 𝑎)
40 simplr 768 . . . . . . . . . . . . . 14 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → 𝑏𝑎)
41 ordsucss 7854 . . . . . . . . . . . . . 14 (Ord 𝑎 → (𝑏𝑎 → suc 𝑏𝑎))
4239, 40, 41sylc 65 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → suc 𝑏𝑎)
43 simpr 484 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → 𝑎𝑥)
4442, 43jca 511 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → (suc 𝑏𝑎𝑎𝑥))
45 ontr2 6442 . . . . . . . . . . . 12 ((suc 𝑏 ∈ On ∧ 𝑥 ∈ On) → ((suc 𝑏𝑎𝑎𝑥) → suc 𝑏𝑥))
4637, 44, 45sylc 65 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) ∧ 𝑎𝑥) → suc 𝑏𝑥)
4746ex 412 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑏𝑎) → (𝑎𝑥 → suc 𝑏𝑥))
4847ralrimdva 3160 . . . . . . . . 9 ((𝑎 ∈ On ∧ 𝑥 ∈ On) → (𝑎𝑥 → ∀𝑏𝑎 suc 𝑏𝑥))
4948pm4.71d 561 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑥 ∈ On) → (𝑎𝑥 ↔ (𝑎𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
5049adantlr 714 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑥 ∈ On) → (𝑎𝑥 ↔ (𝑎𝑥 ∧ ∀𝑏𝑎 suc 𝑏𝑥)))
5110, 31, 503bitr4d 311 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) ∧ 𝑥 ∈ On) → ((∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥) ↔ 𝑎𝑥))
5251rabbidva 3450 . . . . 5 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → {𝑥 ∈ On ∣ (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
5352inteqd 4975 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → {𝑥 ∈ On ∣ (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥)} = {𝑥 ∈ On ∣ 𝑎𝑥})
54 1on 8534 . . . . . 6 1o ∈ On
55 naddov2 8735 . . . . . 6 ((𝑎 ∈ On ∧ 1o ∈ On) → (𝑎 +no 1o) = {𝑥 ∈ On ∣ (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥)})
5654, 55mpan2 690 . . . . 5 (𝑎 ∈ On → (𝑎 +no 1o) = {𝑥 ∈ On ∣ (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥)})
5756adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → (𝑎 +no 1o) = {𝑥 ∈ On ∣ (∀𝑦 ∈ 1o (𝑎 +no 𝑦) ∈ 𝑥 ∧ ∀𝑦𝑎 (𝑦 +no 1o) ∈ 𝑥)})
58 onsucmin 7857 . . . . 5 (𝑎 ∈ On → suc 𝑎 = {𝑥 ∈ On ∣ 𝑎𝑥})
5958adantr 480 . . . 4 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → suc 𝑎 = {𝑥 ∈ On ∣ 𝑎𝑥})
6053, 57, 593eqtr4d 2790 . . 3 ((𝑎 ∈ On ∧ ∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏) → (𝑎 +no 1o) = suc 𝑎)
6160ex 412 . 2 (𝑎 ∈ On → (∀𝑏𝑎 (𝑏 +no 1o) = suc 𝑏 → (𝑎 +no 1o) = suc 𝑎))
623, 6, 61tfis3 7895 1 (𝐴 ∈ On → (𝐴 +no 1o) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976  c0 4352  {csn 4648   cint 4970  Ord word 6394  Oncon0 6395  suc csuc 6397  (class class class)co 7448  1oc1o 8515   +no cnadd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-1o 8522  df-nadd 8722
This theorem is referenced by:  naddass1  43355
  Copyright terms: Public domain W3C validator