Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendbas Structured version   Visualization version   GIF version

Theorem mendbas 43212
Description: Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypothesis
Ref Expression
mendbas.a 𝐴 = (MEndo‘𝑀)
Assertion
Ref Expression
mendbas (𝑀 LMHom 𝑀) = (Base‘𝐴)

Proof of Theorem mendbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7379 . . . 4 (𝑀 LMHom 𝑀) ∈ V
2 eqid 2731 . . . . 5 ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}) = ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})
32algbase 43206 . . . 4 ((𝑀 LMHom 𝑀) ∈ V → (𝑀 LMHom 𝑀) = (Base‘({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
41, 3mp1i 13 . . 3 (𝑀 ∈ V → (𝑀 LMHom 𝑀) = (Base‘({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
5 mendbas.a . . . . 5 𝐴 = (MEndo‘𝑀)
6 eqid 2731 . . . . . 6 (𝑀 LMHom 𝑀) = (𝑀 LMHom 𝑀)
7 eqid 2731 . . . . . 6 (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦)) = (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))
8 eqid 2731 . . . . . 6 (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦)) = (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))
9 eqid 2731 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
10 eqid 2731 . . . . . 6 (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦)) = (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
116, 7, 8, 9, 10mendval 43211 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}))
125, 11eqtrid 2778 . . . 4 (𝑀 ∈ V → 𝐴 = ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}))
1312fveq2d 6826 . . 3 (𝑀 ∈ V → (Base‘𝐴) = (Base‘({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
144, 13eqtr4d 2769 . 2 (𝑀 ∈ V → (𝑀 LMHom 𝑀) = (Base‘𝐴))
15 base0 17122 . . 3 ∅ = (Base‘∅)
16 reldmlmhm 20957 . . . 4 Rel dom LMHom
1716ovprc1 7385 . . 3 𝑀 ∈ V → (𝑀 LMHom 𝑀) = ∅)
18 fvprc 6814 . . . . 5 𝑀 ∈ V → (MEndo‘𝑀) = ∅)
195, 18eqtrid 2778 . . . 4 𝑀 ∈ V → 𝐴 = ∅)
2019fveq2d 6826 . . 3 𝑀 ∈ V → (Base‘𝐴) = (Base‘∅))
2115, 17, 203eqtr4a 2792 . 2 𝑀 ∈ V → (𝑀 LMHom 𝑀) = (Base‘𝐴))
2214, 21pm2.61i 182 1 (𝑀 LMHom 𝑀) = (Base‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  cun 3900  c0 4283  {csn 4576  {cpr 4578  {ctp 4580  cop 4582   × cxp 5614  ccom 5620  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608  ndxcnx 17101  Basecbs 17117  +gcplusg 17158  .rcmulr 17159  Scalarcsca 17161   ·𝑠 cvsca 17162   LMHom clmhm 20951  MEndocmend 43203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-lmhm 20954  df-mend 43204
This theorem is referenced by:  mendplusgfval  43213  mendmulrfval  43215  mendvscafval  43218  mendring  43220  mendlmod  43221  mendassa  43222
  Copyright terms: Public domain W3C validator