Step | Hyp | Ref
| Expression |
1 | | ovex 7308 |
. . . 4
⊢ (𝑀 LMHom 𝑀) ∈ V |
2 | | eqid 2738 |
. . . . 5
⊢
({〈(Base‘ndx), (𝑀 LMHom 𝑀)〉, 〈(+g‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘f
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑀)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f (
·𝑠 ‘𝑀)𝑦))〉}) = ({〈(Base‘ndx), (𝑀 LMHom 𝑀)〉, 〈(+g‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘f
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑀)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f (
·𝑠 ‘𝑀)𝑦))〉}) |
3 | 2 | algbase 41003 |
. . . 4
⊢ ((𝑀 LMHom 𝑀) ∈ V → (𝑀 LMHom 𝑀) = (Base‘({〈(Base‘ndx),
(𝑀 LMHom 𝑀)〉, 〈(+g‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘f
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑀)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f (
·𝑠 ‘𝑀)𝑦))〉}))) |
4 | 1, 3 | mp1i 13 |
. . 3
⊢ (𝑀 ∈ V → (𝑀 LMHom 𝑀) = (Base‘({〈(Base‘ndx),
(𝑀 LMHom 𝑀)〉, 〈(+g‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘f
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑀)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f (
·𝑠 ‘𝑀)𝑦))〉}))) |
5 | | mendbas.a |
. . . . 5
⊢ 𝐴 = (MEndo‘𝑀) |
6 | | eqid 2738 |
. . . . . 6
⊢ (𝑀 LMHom 𝑀) = (𝑀 LMHom 𝑀) |
7 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘f
(+g‘𝑀)𝑦)) = (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘f
(+g‘𝑀)𝑦)) |
8 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘ 𝑦)) = (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘ 𝑦)) |
9 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
10 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈
(Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f (
·𝑠 ‘𝑀)𝑦)) = (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f (
·𝑠 ‘𝑀)𝑦)) |
11 | 6, 7, 8, 9, 10 | mendval 41008 |
. . . . 5
⊢ (𝑀 ∈ V →
(MEndo‘𝑀) =
({〈(Base‘ndx), (𝑀 LMHom 𝑀)〉, 〈(+g‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘f
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑀)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f (
·𝑠 ‘𝑀)𝑦))〉})) |
12 | 5, 11 | eqtrid 2790 |
. . . 4
⊢ (𝑀 ∈ V → 𝐴 = ({〈(Base‘ndx),
(𝑀 LMHom 𝑀)〉, 〈(+g‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘f
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑀)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f (
·𝑠 ‘𝑀)𝑦))〉})) |
13 | 12 | fveq2d 6778 |
. . 3
⊢ (𝑀 ∈ V →
(Base‘𝐴) =
(Base‘({〈(Base‘ndx), (𝑀 LMHom 𝑀)〉, 〈(+g‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘f
(+g‘𝑀)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑀)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f (
·𝑠 ‘𝑀)𝑦))〉}))) |
14 | 4, 13 | eqtr4d 2781 |
. 2
⊢ (𝑀 ∈ V → (𝑀 LMHom 𝑀) = (Base‘𝐴)) |
15 | | base0 16917 |
. . 3
⊢ ∅ =
(Base‘∅) |
16 | | reldmlmhm 20287 |
. . . 4
⊢ Rel dom
LMHom |
17 | 16 | ovprc1 7314 |
. . 3
⊢ (¬
𝑀 ∈ V → (𝑀 LMHom 𝑀) = ∅) |
18 | | fvprc 6766 |
. . . . 5
⊢ (¬
𝑀 ∈ V →
(MEndo‘𝑀) =
∅) |
19 | 5, 18 | eqtrid 2790 |
. . . 4
⊢ (¬
𝑀 ∈ V → 𝐴 = ∅) |
20 | 19 | fveq2d 6778 |
. . 3
⊢ (¬
𝑀 ∈ V →
(Base‘𝐴) =
(Base‘∅)) |
21 | 15, 17, 20 | 3eqtr4a 2804 |
. 2
⊢ (¬
𝑀 ∈ V → (𝑀 LMHom 𝑀) = (Base‘𝐴)) |
22 | 14, 21 | pm2.61i 182 |
1
⊢ (𝑀 LMHom 𝑀) = (Base‘𝐴) |