| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimfn | Structured version Visualization version GIF version | ||
| Description: Lemma for module isomorphisms. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| lmimfn | ⊢ LMIso Fn (LMod × LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lmim 21023 | . 2 ⊢ LMIso = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) | |
| 2 | ovex 7465 | . . 3 ⊢ (𝑠 LMHom 𝑡) ∈ V | |
| 3 | 2 | rabex 5338 | . 2 ⊢ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)} ∈ V |
| 4 | 1, 3 | fnmpoi 8096 | 1 ⊢ LMIso Fn (LMod × LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: {crab 3435 × cxp 5682 Fn wfn 6555 –1-1-onto→wf1o 6559 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 LModclmod 20859 LMHom clmhm 21019 LMIso clmim 21020 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-lmim 21023 |
| This theorem is referenced by: brlmic 21068 |
| Copyright terms: Public domain | W3C validator |