![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdeglem1 | Structured version Visualization version GIF version |
Description: Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
tdeglem.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
tdeglem.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
Ref | Expression |
---|---|
tdeglem1 | ⊢ (𝐼 ∈ 𝑉 → 𝐻:𝐴⟶ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfld0 20092 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
2 | cnring 20090 | . . . 4 ⊢ ℂfld ∈ Ring | |
3 | ringcmn 18897 | . . . 4 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → ℂfld ∈ CMnd) |
5 | simpl 475 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → 𝐼 ∈ 𝑉) | |
6 | nn0subm 20123 | . . . 4 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → ℕ0 ∈ (SubMnd‘ℂfld)) |
8 | tdeglem.a | . . . 4 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
9 | 8 | psrbagf 19688 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → ℎ:𝐼⟶ℕ0) |
10 | 8 | psrbagfsupp 19831 | . . . 4 ⊢ ((ℎ ∈ 𝐴 ∧ 𝐼 ∈ 𝑉) → ℎ finSupp 0) |
11 | 10 | ancoms 451 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → ℎ finSupp 0) |
12 | 1, 4, 5, 7, 9, 11 | gsumsubmcl 18634 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ ℎ ∈ 𝐴) → (ℂfld Σg ℎ) ∈ ℕ0) |
13 | tdeglem.h | . 2 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
14 | 12, 13 | fmptd 6610 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐻:𝐴⟶ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3093 class class class wbr 4843 ↦ cmpt 4922 ◡ccnv 5311 “ cima 5315 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ↑𝑚 cmap 8095 Fincfn 8195 finSupp cfsupp 8517 0cc0 10224 ℕcn 11312 ℕ0cn0 11580 Σg cgsu 16416 SubMndcsubmnd 17649 CMndccmn 18508 Ringcrg 18863 ℂfldccnfld 20068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-fzo 12721 df-seq 13056 df-hash 13371 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-0g 16417 df-gsum 16418 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-grp 17741 df-minusg 17742 df-cntz 18062 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-cring 18866 df-cnfld 20069 |
This theorem is referenced by: mdegleb 24165 mdeglt 24166 mdegldg 24167 mdegxrcl 24168 mdegcl 24170 mdegnn0cl 24172 mdegaddle 24175 mdegle0 24178 mdegmullem 24179 |
Copyright terms: Public domain | W3C validator |