| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tdeglem1 | Structured version Visualization version GIF version | ||
| Description: Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| tdeglem.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
| tdeglem.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
| Ref | Expression |
|---|---|
| tdeglem1 | ⊢ 𝐻:𝐴⟶ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tdeglem.h | . 2 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
| 2 | cnfld0 21304 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
| 3 | cnring 21302 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 4 | ringcmn 20191 | . . . 4 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
| 5 | 3, 4 | mp1i 13 | . . 3 ⊢ (ℎ ∈ 𝐴 → ℂfld ∈ CMnd) |
| 6 | id 22 | . . . 4 ⊢ (ℎ ∈ 𝐴 → ℎ ∈ 𝐴) | |
| 7 | tdeglem.a | . . . . . 6 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
| 8 | 7 | psrbagf 21827 | . . . . 5 ⊢ (ℎ ∈ 𝐴 → ℎ:𝐼⟶ℕ0) |
| 9 | 8 | ffnd 6689 | . . . 4 ⊢ (ℎ ∈ 𝐴 → ℎ Fn 𝐼) |
| 10 | 6, 9 | fndmexd 7880 | . . 3 ⊢ (ℎ ∈ 𝐴 → 𝐼 ∈ V) |
| 11 | nn0subm 21339 | . . . 4 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
| 12 | 11 | a1i 11 | . . 3 ⊢ (ℎ ∈ 𝐴 → ℕ0 ∈ (SubMnd‘ℂfld)) |
| 13 | 7 | psrbagfsupp 21828 | . . 3 ⊢ (ℎ ∈ 𝐴 → ℎ finSupp 0) |
| 14 | 2, 5, 10, 12, 8, 13 | gsumsubmcl 19849 | . 2 ⊢ (ℎ ∈ 𝐴 → (ℂfld Σg ℎ) ∈ ℕ0) |
| 15 | 1, 14 | fmpti 7084 | 1 ⊢ 𝐻:𝐴⟶ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 Σg cgsu 17403 SubMndcsubmnd 18709 CMndccmn 19710 Ringcrg 20142 ℂfldccnfld 21264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-gsum 17405 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-ur 20091 df-ring 20144 df-cring 20145 df-cnfld 21265 |
| This theorem is referenced by: mdegleb 25969 mdeglt 25970 mdegldg 25971 mdegxrcl 25972 mdegcl 25974 mdegnn0cl 25976 mdegaddle 25979 mdegle0 25982 mdegmullem 25983 |
| Copyright terms: Public domain | W3C validator |