![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdeglem1 | Structured version Visualization version GIF version |
Description: Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove sethood antecedent. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
tdeglem.a | β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
tdeglem.h | β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) |
Ref | Expression |
---|---|
tdeglem1 | β’ π»:π΄βΆβ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tdeglem.h | . 2 β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) | |
2 | cnfld0 21327 | . . 3 β’ 0 = (0gββfld) | |
3 | cnring 21325 | . . . 4 β’ βfld β Ring | |
4 | ringcmn 20225 | . . . 4 β’ (βfld β Ring β βfld β CMnd) | |
5 | 3, 4 | mp1i 13 | . . 3 β’ (β β π΄ β βfld β CMnd) |
6 | id 22 | . . . 4 β’ (β β π΄ β β β π΄) | |
7 | tdeglem.a | . . . . . 6 β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
8 | 7 | psrbagf 21858 | . . . . 5 β’ (β β π΄ β β:πΌβΆβ0) |
9 | 8 | ffnd 6728 | . . . 4 β’ (β β π΄ β β Fn πΌ) |
10 | 6, 9 | fndmexd 7918 | . . 3 β’ (β β π΄ β πΌ β V) |
11 | nn0subm 21362 | . . . 4 β’ β0 β (SubMndββfld) | |
12 | 11 | a1i 11 | . . 3 β’ (β β π΄ β β0 β (SubMndββfld)) |
13 | 7 | psrbagfsupp 21860 | . . 3 β’ (β β π΄ β β finSupp 0) |
14 | 2, 5, 10, 12, 8, 13 | gsumsubmcl 19881 | . 2 β’ (β β π΄ β (βfld Ξ£g β) β β0) |
15 | 1, 14 | fmpti 7127 | 1 β’ π»:π΄βΆβ0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 {crab 3430 Vcvv 3473 β¦ cmpt 5235 β‘ccnv 5681 β cima 5685 βΆwf 6549 βcfv 6553 (class class class)co 7426 βm cmap 8851 Fincfn 8970 0cc0 11146 βcn 12250 β0cn0 12510 Ξ£g cgsu 17429 SubMndcsubmnd 18746 CMndccmn 19742 Ringcrg 20180 βfldccnfld 21286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-addf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14007 df-hash 14330 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-0g 17430 df-gsum 17431 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-grp 18900 df-minusg 18901 df-cntz 19275 df-cmn 19744 df-abl 19745 df-mgp 20082 df-ur 20129 df-ring 20182 df-cring 20183 df-cnfld 21287 |
This theorem is referenced by: mdegleb 26020 mdeglt 26021 mdegldg 26022 mdegxrcl 26023 mdegcl 26025 mdegnn0cl 26027 mdegaddle 26030 mdegle0 26033 mdegmullem 26034 |
Copyright terms: Public domain | W3C validator |