MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmbas2 Structured version   Visualization version   GIF version

Theorem dsmmbas2 20873
Description: Base set of the direct sum module using the fndmin 6808 abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
dsmmbas2.p 𝑃 = (𝑆Xs𝑅)
dsmmbas2.b 𝐵 = {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
Assertion
Ref Expression
dsmmbas2 ((𝑅 Fn 𝐼𝐼𝑉) → 𝐵 = (Base‘(𝑆m 𝑅)))
Distinct variable groups:   𝑆,𝑓   𝑅,𝑓   𝑃,𝑓   𝑓,𝐼   𝑓,𝑉
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem dsmmbas2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dsmmbas2.b . 2 𝐵 = {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
2 dsmmbas2.p . . . . . 6 𝑃 = (𝑆Xs𝑅)
32fveq2i 6666 . . . . 5 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
43rabeqi 3481 . . . 4 {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
5 simpll 765 . . . . . . . . . 10 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑅 Fn 𝐼)
6 fvco2 6751 . . . . . . . . . 10 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
75, 6sylan 582 . . . . . . . . 9 ((((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) ∧ 𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
87neeq2d 3074 . . . . . . . 8 ((((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) ∧ 𝑥𝐼) → ((𝑓𝑥) ≠ ((0g𝑅)‘𝑥) ↔ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))))
98rabbidva 3477 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
10 eqid 2819 . . . . . . . . 9 (𝑆Xs𝑅) = (𝑆Xs𝑅)
11 eqid 2819 . . . . . . . . 9 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
12 reldmprds 16714 . . . . . . . . . . 11 Rel dom Xs
1310, 11, 12strov2rcl 16538 . . . . . . . . . 10 (𝑓 ∈ (Base‘(𝑆Xs𝑅)) → 𝑆 ∈ V)
1413adantl 484 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑆 ∈ V)
15 simplr 767 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝐼𝑉)
16 simpr 487 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
1710, 11, 14, 15, 5, 16prdsbasfn 16736 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 Fn 𝐼)
18 fn0g 17865 . . . . . . . . . . . 12 0g Fn V
19 dffn2 6509 . . . . . . . . . . . 12 (0g Fn V ↔ 0g:V⟶V)
2018, 19mpbi 232 . . . . . . . . . . 11 0g:V⟶V
21 dffn2 6509 . . . . . . . . . . . 12 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
2221biimpi 218 . . . . . . . . . . 11 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
23 fco 6524 . . . . . . . . . . 11 ((0g:V⟶V ∧ 𝑅:𝐼⟶V) → (0g𝑅):𝐼⟶V)
2420, 22, 23sylancr 589 . . . . . . . . . 10 (𝑅 Fn 𝐼 → (0g𝑅):𝐼⟶V)
2524ffnd 6508 . . . . . . . . 9 (𝑅 Fn 𝐼 → (0g𝑅) Fn 𝐼)
265, 25syl 17 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → (0g𝑅) Fn 𝐼)
27 fndmdif 6805 . . . . . . . 8 ((𝑓 Fn 𝐼 ∧ (0g𝑅) Fn 𝐼) → dom (𝑓 ∖ (0g𝑅)) = {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)})
2817, 26, 27syl2anc 586 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) = {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)})
29 fndm 6448 . . . . . . . . 9 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
3029rabeqdv 3483 . . . . . . . 8 (𝑅 Fn 𝐼 → {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
315, 30syl 17 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
329, 28, 313eqtr4d 2864 . . . . . 6 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) = {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
3332eleq1d 2895 . . . . 5 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → (dom (𝑓 ∖ (0g𝑅)) ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
3433rabbidva 3477 . . . 4 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
354, 34syl5eq 2866 . . 3 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
36 fnex 6972 . . . 4 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
37 eqid 2819 . . . . 5 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
3837dsmmbase 20871 . . . 4 (𝑅 ∈ V → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
3936, 38syl 17 . . 3 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
4035, 39eqtrd 2854 . 2 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = (Base‘(𝑆m 𝑅)))
411, 40syl5eq 2866 1 ((𝑅 Fn 𝐼𝐼𝑉) → 𝐵 = (Base‘(𝑆m 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  wne 3014  {crab 3140  Vcvv 3493  cdif 3931  dom cdm 5548  ccom 5552   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  Fincfn 8501  Basecbs 16475  0gc0g 16705  Xscprds 16711  m cdsmm 20867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-dsmm 20868
This theorem is referenced by:  dsmmfi  20874  frlmbas  20891
  Copyright terms: Public domain W3C validator