MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmbas2 Structured version   Visualization version   GIF version

Theorem dsmmbas2 21697
Description: Base set of the direct sum module using the fndmin 7035 abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
dsmmbas2.p 𝑃 = (𝑆Xs𝑅)
dsmmbas2.b 𝐵 = {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
Assertion
Ref Expression
dsmmbas2 ((𝑅 Fn 𝐼𝐼𝑉) → 𝐵 = (Base‘(𝑆m 𝑅)))
Distinct variable groups:   𝑆,𝑓   𝑅,𝑓   𝑃,𝑓   𝑓,𝐼   𝑓,𝑉
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem dsmmbas2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dsmmbas2.b . 2 𝐵 = {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
2 dsmmbas2.p . . . . . 6 𝑃 = (𝑆Xs𝑅)
32fveq2i 6879 . . . . 5 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
43rabeqi 3429 . . . 4 {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
5 simpll 766 . . . . . . . . . 10 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑅 Fn 𝐼)
6 fvco2 6976 . . . . . . . . . 10 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
75, 6sylan 580 . . . . . . . . 9 ((((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) ∧ 𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
87neeq2d 2992 . . . . . . . 8 ((((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) ∧ 𝑥𝐼) → ((𝑓𝑥) ≠ ((0g𝑅)‘𝑥) ↔ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))))
98rabbidva 3422 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
10 eqid 2735 . . . . . . . . 9 (𝑆Xs𝑅) = (𝑆Xs𝑅)
11 eqid 2735 . . . . . . . . 9 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
12 reldmprds 17462 . . . . . . . . . . 11 Rel dom Xs
1310, 11, 12strov2rcl 17236 . . . . . . . . . 10 (𝑓 ∈ (Base‘(𝑆Xs𝑅)) → 𝑆 ∈ V)
1413adantl 481 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑆 ∈ V)
15 simplr 768 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝐼𝑉)
16 simpr 484 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
1710, 11, 14, 15, 5, 16prdsbasfn 17485 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 Fn 𝐼)
18 fn0g 18641 . . . . . . . . . . . 12 0g Fn V
19 dffn2 6708 . . . . . . . . . . . 12 (0g Fn V ↔ 0g:V⟶V)
2018, 19mpbi 230 . . . . . . . . . . 11 0g:V⟶V
21 dffn2 6708 . . . . . . . . . . . 12 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
2221biimpi 216 . . . . . . . . . . 11 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
23 fco 6730 . . . . . . . . . . 11 ((0g:V⟶V ∧ 𝑅:𝐼⟶V) → (0g𝑅):𝐼⟶V)
2420, 22, 23sylancr 587 . . . . . . . . . 10 (𝑅 Fn 𝐼 → (0g𝑅):𝐼⟶V)
2524ffnd 6707 . . . . . . . . 9 (𝑅 Fn 𝐼 → (0g𝑅) Fn 𝐼)
265, 25syl 17 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → (0g𝑅) Fn 𝐼)
27 fndmdif 7032 . . . . . . . 8 ((𝑓 Fn 𝐼 ∧ (0g𝑅) Fn 𝐼) → dom (𝑓 ∖ (0g𝑅)) = {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)})
2817, 26, 27syl2anc 584 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) = {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)})
29 fndm 6641 . . . . . . . . 9 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
3029rabeqdv 3431 . . . . . . . 8 (𝑅 Fn 𝐼 → {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
315, 30syl 17 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
329, 28, 313eqtr4d 2780 . . . . . 6 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) = {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
3332eleq1d 2819 . . . . 5 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → (dom (𝑓 ∖ (0g𝑅)) ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
3433rabbidva 3422 . . . 4 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
354, 34eqtrid 2782 . . 3 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
36 fnex 7209 . . . 4 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
37 eqid 2735 . . . . 5 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
3837dsmmbase 21695 . . . 4 (𝑅 ∈ V → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
3936, 38syl 17 . . 3 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
4035, 39eqtrd 2770 . 2 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = (Base‘(𝑆m 𝑅)))
411, 40eqtrid 2782 1 ((𝑅 Fn 𝐼𝐼𝑉) → 𝐵 = (Base‘(𝑆m 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  Vcvv 3459  cdif 3923  dom cdm 5654  ccom 5658   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Fincfn 8959  Basecbs 17228  0gc0g 17453  Xscprds 17459  m cdsmm 21691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-dsmm 21692
This theorem is referenced by:  dsmmfi  21698  frlmbas  21715
  Copyright terms: Public domain W3C validator