MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmbas2 Structured version   Visualization version   GIF version

Theorem dsmmbas2 21653
Description: Base set of the direct sum module using the fndmin 7020 abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
dsmmbas2.p 𝑃 = (𝑆Xs𝑅)
dsmmbas2.b 𝐵 = {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
Assertion
Ref Expression
dsmmbas2 ((𝑅 Fn 𝐼𝐼𝑉) → 𝐵 = (Base‘(𝑆m 𝑅)))
Distinct variable groups:   𝑆,𝑓   𝑅,𝑓   𝑃,𝑓   𝑓,𝐼   𝑓,𝑉
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem dsmmbas2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dsmmbas2.b . 2 𝐵 = {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
2 dsmmbas2.p . . . . . 6 𝑃 = (𝑆Xs𝑅)
32fveq2i 6864 . . . . 5 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
43rabeqi 3422 . . . 4 {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
5 simpll 766 . . . . . . . . . 10 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑅 Fn 𝐼)
6 fvco2 6961 . . . . . . . . . 10 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
75, 6sylan 580 . . . . . . . . 9 ((((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) ∧ 𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
87neeq2d 2986 . . . . . . . 8 ((((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) ∧ 𝑥𝐼) → ((𝑓𝑥) ≠ ((0g𝑅)‘𝑥) ↔ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))))
98rabbidva 3415 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
10 eqid 2730 . . . . . . . . 9 (𝑆Xs𝑅) = (𝑆Xs𝑅)
11 eqid 2730 . . . . . . . . 9 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
12 reldmprds 17418 . . . . . . . . . . 11 Rel dom Xs
1310, 11, 12strov2rcl 17194 . . . . . . . . . 10 (𝑓 ∈ (Base‘(𝑆Xs𝑅)) → 𝑆 ∈ V)
1413adantl 481 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑆 ∈ V)
15 simplr 768 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝐼𝑉)
16 simpr 484 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
1710, 11, 14, 15, 5, 16prdsbasfn 17441 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 Fn 𝐼)
18 fn0g 18597 . . . . . . . . . . . 12 0g Fn V
19 dffn2 6693 . . . . . . . . . . . 12 (0g Fn V ↔ 0g:V⟶V)
2018, 19mpbi 230 . . . . . . . . . . 11 0g:V⟶V
21 dffn2 6693 . . . . . . . . . . . 12 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
2221biimpi 216 . . . . . . . . . . 11 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
23 fco 6715 . . . . . . . . . . 11 ((0g:V⟶V ∧ 𝑅:𝐼⟶V) → (0g𝑅):𝐼⟶V)
2420, 22, 23sylancr 587 . . . . . . . . . 10 (𝑅 Fn 𝐼 → (0g𝑅):𝐼⟶V)
2524ffnd 6692 . . . . . . . . 9 (𝑅 Fn 𝐼 → (0g𝑅) Fn 𝐼)
265, 25syl 17 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → (0g𝑅) Fn 𝐼)
27 fndmdif 7017 . . . . . . . 8 ((𝑓 Fn 𝐼 ∧ (0g𝑅) Fn 𝐼) → dom (𝑓 ∖ (0g𝑅)) = {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)})
2817, 26, 27syl2anc 584 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) = {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)})
29 fndm 6624 . . . . . . . . 9 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
3029rabeqdv 3424 . . . . . . . 8 (𝑅 Fn 𝐼 → {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
315, 30syl 17 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
329, 28, 313eqtr4d 2775 . . . . . 6 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) = {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
3332eleq1d 2814 . . . . 5 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → (dom (𝑓 ∖ (0g𝑅)) ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
3433rabbidva 3415 . . . 4 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
354, 34eqtrid 2777 . . 3 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
36 fnex 7194 . . . 4 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
37 eqid 2730 . . . . 5 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
3837dsmmbase 21651 . . . 4 (𝑅 ∈ V → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
3936, 38syl 17 . . 3 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
4035, 39eqtrd 2765 . 2 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = (Base‘(𝑆m 𝑅)))
411, 40eqtrid 2777 1 ((𝑅 Fn 𝐼𝐼𝑉) → 𝐵 = (Base‘(𝑆m 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  cdif 3914  dom cdm 5641  ccom 5645   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  0gc0g 17409  Xscprds 17415  m cdsmm 21647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-dsmm 21648
This theorem is referenced by:  dsmmfi  21654  frlmbas  21671
  Copyright terms: Public domain W3C validator