MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmbas2 Structured version   Visualization version   GIF version

Theorem dsmmbas2 20854
Description: Base set of the direct sum module using the fndmin 6904 abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
dsmmbas2.p 𝑃 = (𝑆Xs𝑅)
dsmmbas2.b 𝐵 = {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
Assertion
Ref Expression
dsmmbas2 ((𝑅 Fn 𝐼𝐼𝑉) → 𝐵 = (Base‘(𝑆m 𝑅)))
Distinct variable groups:   𝑆,𝑓   𝑅,𝑓   𝑃,𝑓   𝑓,𝐼   𝑓,𝑉
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem dsmmbas2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dsmmbas2.b . 2 𝐵 = {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
2 dsmmbas2.p . . . . . 6 𝑃 = (𝑆Xs𝑅)
32fveq2i 6759 . . . . 5 (Base‘𝑃) = (Base‘(𝑆Xs𝑅))
43rabeqi 3406 . . . 4 {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
5 simpll 763 . . . . . . . . . 10 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑅 Fn 𝐼)
6 fvco2 6847 . . . . . . . . . 10 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
75, 6sylan 579 . . . . . . . . 9 ((((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) ∧ 𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
87neeq2d 3003 . . . . . . . 8 ((((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) ∧ 𝑥𝐼) → ((𝑓𝑥) ≠ ((0g𝑅)‘𝑥) ↔ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))))
98rabbidva 3402 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
10 eqid 2738 . . . . . . . . 9 (𝑆Xs𝑅) = (𝑆Xs𝑅)
11 eqid 2738 . . . . . . . . 9 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
12 reldmprds 17076 . . . . . . . . . . 11 Rel dom Xs
1310, 11, 12strov2rcl 16848 . . . . . . . . . 10 (𝑓 ∈ (Base‘(𝑆Xs𝑅)) → 𝑆 ∈ V)
1413adantl 481 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑆 ∈ V)
15 simplr 765 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝐼𝑉)
16 simpr 484 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
1710, 11, 14, 15, 5, 16prdsbasfn 17099 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 Fn 𝐼)
18 fn0g 18262 . . . . . . . . . . . 12 0g Fn V
19 dffn2 6586 . . . . . . . . . . . 12 (0g Fn V ↔ 0g:V⟶V)
2018, 19mpbi 229 . . . . . . . . . . 11 0g:V⟶V
21 dffn2 6586 . . . . . . . . . . . 12 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
2221biimpi 215 . . . . . . . . . . 11 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
23 fco 6608 . . . . . . . . . . 11 ((0g:V⟶V ∧ 𝑅:𝐼⟶V) → (0g𝑅):𝐼⟶V)
2420, 22, 23sylancr 586 . . . . . . . . . 10 (𝑅 Fn 𝐼 → (0g𝑅):𝐼⟶V)
2524ffnd 6585 . . . . . . . . 9 (𝑅 Fn 𝐼 → (0g𝑅) Fn 𝐼)
265, 25syl 17 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → (0g𝑅) Fn 𝐼)
27 fndmdif 6901 . . . . . . . 8 ((𝑓 Fn 𝐼 ∧ (0g𝑅) Fn 𝐼) → dom (𝑓 ∖ (0g𝑅)) = {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)})
2817, 26, 27syl2anc 583 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) = {𝑥𝐼 ∣ (𝑓𝑥) ≠ ((0g𝑅)‘𝑥)})
29 fndm 6520 . . . . . . . . 9 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
3029rabeqdv 3409 . . . . . . . 8 (𝑅 Fn 𝐼 → {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
315, 30syl 17 . . . . . . 7 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} = {𝑥𝐼 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
329, 28, 313eqtr4d 2788 . . . . . 6 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) = {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
3332eleq1d 2823 . . . . 5 (((𝑅 Fn 𝐼𝐼𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → (dom (𝑓 ∖ (0g𝑅)) ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
3433rabbidva 3402 . . . 4 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
354, 34eqtrid 2790 . . 3 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
36 fnex 7075 . . . 4 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
37 eqid 2738 . . . . 5 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
3837dsmmbase 20852 . . . 4 (𝑅 ∈ V → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
3936, 38syl 17 . . 3 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin} = (Base‘(𝑆m 𝑅)))
4035, 39eqtrd 2778 . 2 ((𝑅 Fn 𝐼𝐼𝑉) → {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = (Base‘(𝑆m 𝑅)))
411, 40eqtrid 2790 1 ((𝑅 Fn 𝐼𝐼𝑉) → 𝐵 = (Base‘(𝑆m 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  cdif 3880  dom cdm 5580  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840  0gc0g 17067  Xscprds 17073  m cdsmm 20848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-dsmm 20849
This theorem is referenced by:  dsmmfi  20855  frlmbas  20872
  Copyright terms: Public domain W3C validator