Step | Hyp | Ref
| Expression |
1 | | dsmmbas2.b |
. 2
⊢ 𝐵 = {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g ∘ 𝑅)) ∈ Fin} |
2 | | dsmmbas2.p |
. . . . . 6
⊢ 𝑃 = (𝑆Xs𝑅) |
3 | 2 | fveq2i 6777 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘(𝑆Xs𝑅)) |
4 | 3 | rabeqi 3416 |
. . . 4
⊢ {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g ∘
𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g ∘ 𝑅)) ∈ Fin} |
5 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑅 Fn 𝐼) |
6 | | fvco2 6865 |
. . . . . . . . . 10
⊢ ((𝑅 Fn 𝐼 ∧ 𝑥 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑥) = (0g‘(𝑅‘𝑥))) |
7 | 5, 6 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) ∧ 𝑥 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑥) = (0g‘(𝑅‘𝑥))) |
8 | 7 | neeq2d 3004 |
. . . . . . . 8
⊢ ((((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥) ≠ ((0g ∘ 𝑅)‘𝑥) ↔ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥)))) |
9 | 8 | rabbidva 3413 |
. . . . . . 7
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → {𝑥 ∈ 𝐼 ∣ (𝑓‘𝑥) ≠ ((0g ∘ 𝑅)‘𝑥)} = {𝑥 ∈ 𝐼 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))}) |
10 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑆Xs𝑅) = (𝑆Xs𝑅) |
11 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅)) |
12 | | reldmprds 17159 |
. . . . . . . . . . 11
⊢ Rel dom
Xs |
13 | 10, 11, 12 | strov2rcl 16920 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (Base‘(𝑆Xs𝑅)) → 𝑆 ∈ V) |
14 | 13 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑆 ∈ V) |
15 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝐼 ∈ 𝑉) |
16 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 ∈ (Base‘(𝑆Xs𝑅))) |
17 | 10, 11, 14, 15, 5, 16 | prdsbasfn 17182 |
. . . . . . . 8
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 Fn 𝐼) |
18 | | fn0g 18347 |
. . . . . . . . . . . 12
⊢
0g Fn V |
19 | | dffn2 6602 |
. . . . . . . . . . . 12
⊢
(0g Fn V ↔ 0g:V⟶V) |
20 | 18, 19 | mpbi 229 |
. . . . . . . . . . 11
⊢
0g:V⟶V |
21 | | dffn2 6602 |
. . . . . . . . . . . 12
⊢ (𝑅 Fn 𝐼 ↔ 𝑅:𝐼⟶V) |
22 | 21 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑅 Fn 𝐼 → 𝑅:𝐼⟶V) |
23 | | fco 6624 |
. . . . . . . . . . 11
⊢
((0g:V⟶V ∧ 𝑅:𝐼⟶V) → (0g ∘
𝑅):𝐼⟶V) |
24 | 20, 22, 23 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝑅 Fn 𝐼 → (0g ∘ 𝑅):𝐼⟶V) |
25 | 24 | ffnd 6601 |
. . . . . . . . 9
⊢ (𝑅 Fn 𝐼 → (0g ∘ 𝑅) Fn 𝐼) |
26 | 5, 25 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → (0g ∘ 𝑅) Fn 𝐼) |
27 | | fndmdif 6919 |
. . . . . . . 8
⊢ ((𝑓 Fn 𝐼 ∧ (0g ∘ 𝑅) Fn 𝐼) → dom (𝑓 ∖ (0g ∘ 𝑅)) = {𝑥 ∈ 𝐼 ∣ (𝑓‘𝑥) ≠ ((0g ∘ 𝑅)‘𝑥)}) |
28 | 17, 26, 27 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g ∘ 𝑅)) = {𝑥 ∈ 𝐼 ∣ (𝑓‘𝑥) ≠ ((0g ∘ 𝑅)‘𝑥)}) |
29 | | fndm 6536 |
. . . . . . . . 9
⊢ (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼) |
30 | 29 | rabeqdv 3419 |
. . . . . . . 8
⊢ (𝑅 Fn 𝐼 → {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} = {𝑥 ∈ 𝐼 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))}) |
31 | 5, 30 | syl 17 |
. . . . . . 7
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} = {𝑥 ∈ 𝐼 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))}) |
32 | 9, 28, 31 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g ∘ 𝑅)) = {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))}) |
33 | 32 | eleq1d 2823 |
. . . . 5
⊢ (((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → (dom (𝑓 ∖ (0g ∘ 𝑅)) ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin)) |
34 | 33 | rabbidva 3413 |
. . . 4
⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g ∘ 𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) |
35 | 4, 34 | eqtrid 2790 |
. . 3
⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g ∘ 𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) |
36 | | fnex 7093 |
. . . 4
⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → 𝑅 ∈ V) |
37 | | eqid 2738 |
. . . . 5
⊢ {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} |
38 | 37 | dsmmbase 20942 |
. . . 4
⊢ (𝑅 ∈ V → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
39 | 36, 38 | syl 17 |
. . 3
⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} = (Base‘(𝑆 ⊕m 𝑅))) |
40 | 35, 39 | eqtrd 2778 |
. 2
⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → {𝑓 ∈ (Base‘𝑃) ∣ dom (𝑓 ∖ (0g ∘ 𝑅)) ∈ Fin} =
(Base‘(𝑆
⊕m 𝑅))) |
41 | 1, 40 | eqtrid 2790 |
1
⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉) → 𝐵 = (Base‘(𝑆 ⊕m 𝑅))) |