MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmfi Structured version   Visualization version   GIF version

Theorem dsmmfi 20431
Description: For finite products, the direct sum is just the module product. See also the observation in [Lang] p. 129. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
dsmmfi ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (𝑆m 𝑅) = (𝑆Xs𝑅))

Proof of Theorem dsmmfi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2801 . . 3 (Base‘(𝑆m 𝑅)) = (Base‘(𝑆m 𝑅))
21dsmmval2 20429 . 2 (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅)))
3 eqid 2801 . . . . . . . . . . 11 (𝑆Xs𝑅) = (𝑆Xs𝑅)
4 eqid 2801 . . . . . . . . . . 11 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
5 noel 4250 . . . . . . . . . . . . . 14 ¬ 𝑓 ∈ ∅
6 reldmprds 16718 . . . . . . . . . . . . . . . . . 18 Rel dom Xs
76ovprc1 7178 . . . . . . . . . . . . . . . . 17 𝑆 ∈ V → (𝑆Xs𝑅) = ∅)
87fveq2d 6653 . . . . . . . . . . . . . . . 16 𝑆 ∈ V → (Base‘(𝑆Xs𝑅)) = (Base‘∅))
9 base0 16532 . . . . . . . . . . . . . . . 16 ∅ = (Base‘∅)
108, 9eqtr4di 2854 . . . . . . . . . . . . . . 15 𝑆 ∈ V → (Base‘(𝑆Xs𝑅)) = ∅)
1110eleq2d 2878 . . . . . . . . . . . . . 14 𝑆 ∈ V → (𝑓 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑓 ∈ ∅))
125, 11mtbiri 330 . . . . . . . . . . . . 13 𝑆 ∈ V → ¬ 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
1312con4i 114 . . . . . . . . . . . 12 (𝑓 ∈ (Base‘(𝑆Xs𝑅)) → 𝑆 ∈ V)
1413adantl 485 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑆 ∈ V)
15 simplr 768 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝐼 ∈ Fin)
16 simpll 766 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑅 Fn 𝐼)
17 simpr 488 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
183, 4, 14, 15, 16, 17prdsbasfn 16740 . . . . . . . . . 10 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 Fn 𝐼)
1918fndmd 6431 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom 𝑓 = 𝐼)
2019, 15eqeltrd 2893 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom 𝑓 ∈ Fin)
21 difss 4062 . . . . . . . . 9 (𝑓 ∖ (0g𝑅)) ⊆ 𝑓
22 dmss 5739 . . . . . . . . 9 ((𝑓 ∖ (0g𝑅)) ⊆ 𝑓 → dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓)
2321, 22ax-mp 5 . . . . . . . 8 dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓
24 ssfi 8726 . . . . . . . 8 ((dom 𝑓 ∈ Fin ∧ dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓) → dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2520, 23, 24sylancl 589 . . . . . . 7 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2625ralrimiva 3152 . . . . . 6 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ∀𝑓 ∈ (Base‘(𝑆Xs𝑅))dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
27 rabid2 3337 . . . . . 6 ((Base‘(𝑆Xs𝑅)) = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} ↔ ∀𝑓 ∈ (Base‘(𝑆Xs𝑅))dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2826, 27sylibr 237 . . . . 5 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (Base‘(𝑆Xs𝑅)) = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin})
29 eqid 2801 . . . . . 6 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
303, 29dsmmbas2 20430 . . . . 5 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = (Base‘(𝑆m 𝑅)))
3128, 30eqtr2d 2837 . . . 4 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (Base‘(𝑆m 𝑅)) = (Base‘(𝑆Xs𝑅)))
3231oveq2d 7155 . . 3 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))))
33 ovex 7172 . . . 4 (𝑆Xs𝑅) ∈ V
344ressid 16555 . . . 4 ((𝑆Xs𝑅) ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))) = (𝑆Xs𝑅))
3533, 34ax-mp 5 . . 3 ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))) = (𝑆Xs𝑅)
3632, 35eqtrdi 2852 . 2 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = (𝑆Xs𝑅))
372, 36syl5eq 2848 1 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (𝑆m 𝑅) = (𝑆Xs𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  wral 3109  {crab 3113  Vcvv 3444  cdif 3881  wss 3884  c0 4246  dom cdm 5523  ccom 5527   Fn wfn 6323  cfv 6328  (class class class)co 7139  Fincfn 8496  Basecbs 16479  s cress 16480  0gc0g 16709  Xscprds 16715  m cdsmm 20424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-prds 16717  df-dsmm 20425
This theorem is referenced by:  frlmpwsfi  20445
  Copyright terms: Public domain W3C validator