MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmfi Structured version   Visualization version   GIF version

Theorem dsmmfi 21160
Description: For finite products, the direct sum is just the module product. See also the observation in [Lang] p. 129. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
dsmmfi ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (𝑆m 𝑅) = (𝑆Xs𝑅))

Proof of Theorem dsmmfi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘(𝑆m 𝑅)) = (Base‘(𝑆m 𝑅))
21dsmmval2 21158 . 2 (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅)))
3 eqid 2733 . . . . . . . . . . 11 (𝑆Xs𝑅) = (𝑆Xs𝑅)
4 eqid 2733 . . . . . . . . . . 11 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
5 noel 4291 . . . . . . . . . . . . . 14 ¬ 𝑓 ∈ ∅
6 reldmprds 17335 . . . . . . . . . . . . . . . . . 18 Rel dom Xs
76ovprc1 7397 . . . . . . . . . . . . . . . . 17 𝑆 ∈ V → (𝑆Xs𝑅) = ∅)
87fveq2d 6847 . . . . . . . . . . . . . . . 16 𝑆 ∈ V → (Base‘(𝑆Xs𝑅)) = (Base‘∅))
9 base0 17093 . . . . . . . . . . . . . . . 16 ∅ = (Base‘∅)
108, 9eqtr4di 2791 . . . . . . . . . . . . . . 15 𝑆 ∈ V → (Base‘(𝑆Xs𝑅)) = ∅)
1110eleq2d 2820 . . . . . . . . . . . . . 14 𝑆 ∈ V → (𝑓 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑓 ∈ ∅))
125, 11mtbiri 327 . . . . . . . . . . . . 13 𝑆 ∈ V → ¬ 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
1312con4i 114 . . . . . . . . . . . 12 (𝑓 ∈ (Base‘(𝑆Xs𝑅)) → 𝑆 ∈ V)
1413adantl 483 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑆 ∈ V)
15 simplr 768 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝐼 ∈ Fin)
16 simpll 766 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑅 Fn 𝐼)
17 simpr 486 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
183, 4, 14, 15, 16, 17prdsbasfn 17358 . . . . . . . . . 10 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 Fn 𝐼)
1918fndmd 6608 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom 𝑓 = 𝐼)
2019, 15eqeltrd 2834 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom 𝑓 ∈ Fin)
21 difss 4092 . . . . . . . . 9 (𝑓 ∖ (0g𝑅)) ⊆ 𝑓
22 dmss 5859 . . . . . . . . 9 ((𝑓 ∖ (0g𝑅)) ⊆ 𝑓 → dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓)
2321, 22ax-mp 5 . . . . . . . 8 dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓
24 ssfi 9120 . . . . . . . 8 ((dom 𝑓 ∈ Fin ∧ dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓) → dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2520, 23, 24sylancl 587 . . . . . . 7 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2625ralrimiva 3140 . . . . . 6 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ∀𝑓 ∈ (Base‘(𝑆Xs𝑅))dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
27 rabid2 3435 . . . . . 6 ((Base‘(𝑆Xs𝑅)) = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} ↔ ∀𝑓 ∈ (Base‘(𝑆Xs𝑅))dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2826, 27sylibr 233 . . . . 5 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (Base‘(𝑆Xs𝑅)) = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin})
29 eqid 2733 . . . . . 6 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
303, 29dsmmbas2 21159 . . . . 5 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = (Base‘(𝑆m 𝑅)))
3128, 30eqtr2d 2774 . . . 4 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (Base‘(𝑆m 𝑅)) = (Base‘(𝑆Xs𝑅)))
3231oveq2d 7374 . . 3 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))))
33 ovex 7391 . . . 4 (𝑆Xs𝑅) ∈ V
344ressid 17130 . . . 4 ((𝑆Xs𝑅) ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))) = (𝑆Xs𝑅))
3533, 34ax-mp 5 . . 3 ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))) = (𝑆Xs𝑅)
3632, 35eqtrdi 2789 . 2 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = (𝑆Xs𝑅))
372, 36eqtrid 2785 1 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (𝑆m 𝑅) = (𝑆Xs𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3061  {crab 3406  Vcvv 3444  cdif 3908  wss 3911  c0 4283  dom cdm 5634  ccom 5638   Fn wfn 6492  cfv 6497  (class class class)co 7358  Fincfn 8886  Basecbs 17088  s cress 17117  0gc0g 17326  Xscprds 17332  m cdsmm 21153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-fz 13431  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-hom 17162  df-cco 17163  df-0g 17328  df-prds 17334  df-dsmm 21154
This theorem is referenced by:  frlmpwsfi  21174
  Copyright terms: Public domain W3C validator