MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmfi Structured version   Visualization version   GIF version

Theorem dsmmfi 21670
Description: For finite products, the direct sum is just the module product. See also the observation in [Lang] p. 129. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
dsmmfi ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (𝑆m 𝑅) = (𝑆Xs𝑅))

Proof of Theorem dsmmfi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘(𝑆m 𝑅)) = (Base‘(𝑆m 𝑅))
21dsmmval2 21668 . 2 (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅)))
3 eqid 2731 . . . . . . . . . . 11 (𝑆Xs𝑅) = (𝑆Xs𝑅)
4 eqid 2731 . . . . . . . . . . 11 (Base‘(𝑆Xs𝑅)) = (Base‘(𝑆Xs𝑅))
5 noel 4283 . . . . . . . . . . . . . 14 ¬ 𝑓 ∈ ∅
6 reldmprds 17347 . . . . . . . . . . . . . . . . . 18 Rel dom Xs
76ovprc1 7380 . . . . . . . . . . . . . . . . 17 𝑆 ∈ V → (𝑆Xs𝑅) = ∅)
87fveq2d 6821 . . . . . . . . . . . . . . . 16 𝑆 ∈ V → (Base‘(𝑆Xs𝑅)) = (Base‘∅))
9 base0 17120 . . . . . . . . . . . . . . . 16 ∅ = (Base‘∅)
108, 9eqtr4di 2784 . . . . . . . . . . . . . . 15 𝑆 ∈ V → (Base‘(𝑆Xs𝑅)) = ∅)
1110eleq2d 2817 . . . . . . . . . . . . . 14 𝑆 ∈ V → (𝑓 ∈ (Base‘(𝑆Xs𝑅)) ↔ 𝑓 ∈ ∅))
125, 11mtbiri 327 . . . . . . . . . . . . 13 𝑆 ∈ V → ¬ 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
1312con4i 114 . . . . . . . . . . . 12 (𝑓 ∈ (Base‘(𝑆Xs𝑅)) → 𝑆 ∈ V)
1413adantl 481 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑆 ∈ V)
15 simplr 768 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝐼 ∈ Fin)
16 simpll 766 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑅 Fn 𝐼)
17 simpr 484 . . . . . . . . . . 11 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 ∈ (Base‘(𝑆Xs𝑅)))
183, 4, 14, 15, 16, 17prdsbasfn 17370 . . . . . . . . . 10 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → 𝑓 Fn 𝐼)
1918fndmd 6581 . . . . . . . . 9 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom 𝑓 = 𝐼)
2019, 15eqeltrd 2831 . . . . . . . 8 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom 𝑓 ∈ Fin)
21 difss 4081 . . . . . . . . 9 (𝑓 ∖ (0g𝑅)) ⊆ 𝑓
22 dmss 5837 . . . . . . . . 9 ((𝑓 ∖ (0g𝑅)) ⊆ 𝑓 → dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓)
2321, 22ax-mp 5 . . . . . . . 8 dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓
24 ssfi 9077 . . . . . . . 8 ((dom 𝑓 ∈ Fin ∧ dom (𝑓 ∖ (0g𝑅)) ⊆ dom 𝑓) → dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2520, 23, 24sylancl 586 . . . . . . 7 (((𝑅 Fn 𝐼𝐼 ∈ Fin) ∧ 𝑓 ∈ (Base‘(𝑆Xs𝑅))) → dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2625ralrimiva 3124 . . . . . 6 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ∀𝑓 ∈ (Base‘(𝑆Xs𝑅))dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
27 rabid2 3428 . . . . . 6 ((Base‘(𝑆Xs𝑅)) = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} ↔ ∀𝑓 ∈ (Base‘(𝑆Xs𝑅))dom (𝑓 ∖ (0g𝑅)) ∈ Fin)
2826, 27sylibr 234 . . . . 5 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (Base‘(𝑆Xs𝑅)) = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin})
29 eqid 2731 . . . . . 6 {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin}
303, 29dsmmbas2 21669 . . . . 5 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ dom (𝑓 ∖ (0g𝑅)) ∈ Fin} = (Base‘(𝑆m 𝑅)))
3128, 30eqtr2d 2767 . . . 4 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (Base‘(𝑆m 𝑅)) = (Base‘(𝑆Xs𝑅)))
3231oveq2d 7357 . . 3 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))))
33 ovex 7374 . . . 4 (𝑆Xs𝑅) ∈ V
344ressid 17150 . . . 4 ((𝑆Xs𝑅) ∈ V → ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))) = (𝑆Xs𝑅))
3533, 34ax-mp 5 . . 3 ((𝑆Xs𝑅) ↾s (Base‘(𝑆Xs𝑅))) = (𝑆Xs𝑅)
3632, 35eqtrdi 2782 . 2 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → ((𝑆Xs𝑅) ↾s (Base‘(𝑆m 𝑅))) = (𝑆Xs𝑅))
372, 36eqtrid 2778 1 ((𝑅 Fn 𝐼𝐼 ∈ Fin) → (𝑆m 𝑅) = (𝑆Xs𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  c0 4278  dom cdm 5611  ccom 5615   Fn wfn 6471  cfv 6476  (class class class)co 7341  Fincfn 8864  Basecbs 17115  s cress 17136  0gc0g 17338  Xscprds 17344  m cdsmm 21663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-hom 17180  df-cco 17181  df-0g 17340  df-prds 17346  df-dsmm 21664
This theorem is referenced by:  frlmpwsfi  21684
  Copyright terms: Public domain W3C validator