MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relelec Structured version   Visualization version   GIF version

Theorem relelec 8744
Description: Membership in an equivalence class when 𝑅 is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
relelec (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))

Proof of Theorem relelec
StepHypRef Expression
1 elex 3492 . . . 4 (𝐴 ∈ [𝐵]𝑅𝐴 ∈ V)
2 ecexr 8704 . . . 4 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
31, 2jca 512 . . 3 (𝐴 ∈ [𝐵]𝑅 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
43adantl 482 . 2 ((Rel 𝑅𝐴 ∈ [𝐵]𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 brrelex12 5726 . . 3 ((Rel 𝑅𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
65ancomd 462 . 2 ((Rel 𝑅𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 elecg 8742 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
84, 6, 7pm5.21nd 800 1 (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3474   class class class wbr 5147  Rel wrel 5680  [cec 8697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ec 8701
This theorem is referenced by:  eqgid  19054  tgptsmscls  23645  eqg0el  32461  pstmfval  32864  ismntop  32994  topfneec  35228  releleccnv  37113  elecres  37133  eleccnvep  37137  inecmo  37212  elecxrn  37244  elec1cnvxrn2  37255  eleccossin  37341
  Copyright terms: Public domain W3C validator