| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relelec | Structured version Visualization version GIF version | ||
| Description: Membership in an equivalence class when 𝑅 is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| relelec | ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . . . 4 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐴 ∈ V) | |
| 2 | ecexr 8676 | . . . 4 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝐴 ∈ [𝐵]𝑅 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ [𝐵]𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 5 | brrelex12 5690 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
| 6 | 5 | ancomd 461 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 7 | elecg 8715 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | |
| 8 | 4, 6, 7 | pm5.21nd 801 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 Rel wrel 5643 [cec 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 |
| This theorem is referenced by: elecres 8719 eqgid 19112 eqg0el 19115 tgptsmscls 24037 pstmfval 33886 ismntop 34016 topfneec 36343 releleccnv 38246 eleccnvep 38269 inecmo 38337 elecxrn 38372 elec1cnvxrn2 38383 eleccossin 38474 |
| Copyright terms: Public domain | W3C validator |