MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relelec Structured version   Visualization version   GIF version

Theorem relelec 8326
Description: Membership in an equivalence class when 𝑅 is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
relelec (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))

Proof of Theorem relelec
StepHypRef Expression
1 elex 3498 . . . 4 (𝐴 ∈ [𝐵]𝑅𝐴 ∈ V)
2 ecexr 8286 . . . 4 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
31, 2jca 515 . . 3 (𝐴 ∈ [𝐵]𝑅 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
43adantl 485 . 2 ((Rel 𝑅𝐴 ∈ [𝐵]𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 brrelex12 5592 . . 3 ((Rel 𝑅𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
65ancomd 465 . 2 ((Rel 𝑅𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 elecg 8324 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
84, 6, 7pm5.21nd 801 1 (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2115  Vcvv 3480   class class class wbr 5053  Rel wrel 5548  [cec 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-br 5054  df-opab 5116  df-xp 5549  df-rel 5550  df-cnv 5551  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-ec 8283
This theorem is referenced by:  eqgid  18330  tgptsmscls  22753  eqg0el  30953  pstmfval  31166  ismntop  31294  topfneec  33730  releleccnv  35590  elecres  35606  eleccnvep  35610  inecmo  35681  elecxrn  35710  elec1cnvxrn2  35717  eleccossin  35795
  Copyright terms: Public domain W3C validator