![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relelec | Structured version Visualization version GIF version |
Description: Membership in an equivalence class when 𝑅 is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
relelec | ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . . . 4 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐴 ∈ V) | |
2 | ecexr 8736 | . . . 4 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) | |
3 | 1, 2 | jca 510 | . . 3 ⊢ (𝐴 ∈ [𝐵]𝑅 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
4 | 3 | adantl 480 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ [𝐵]𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
5 | brrelex12 5734 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
6 | 5 | ancomd 460 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
7 | elecg 8774 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | |
8 | 4, 6, 7 | pm5.21nd 800 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 Vcvv 3473 class class class wbr 5152 Rel wrel 5687 [cec 8729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ec 8733 |
This theorem is referenced by: eqgid 19142 eqg0el 19145 tgptsmscls 24074 pstmfval 33530 ismntop 33660 topfneec 35872 releleccnv 37761 elecres 37781 eleccnvep 37785 inecmo 37859 elecxrn 37890 elec1cnvxrn2 37901 eleccossin 37987 |
Copyright terms: Public domain | W3C validator |