|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > relelec | Structured version Visualization version GIF version | ||
| Description: Membership in an equivalence class when 𝑅 is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| relelec | ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 3501 | . . . 4 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐴 ∈ V) | |
| 2 | ecexr 8750 | . . . 4 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝐴 ∈ [𝐵]𝑅 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 4 | 3 | adantl 481 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ [𝐵]𝑅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 5 | brrelex12 5737 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
| 6 | 5 | ancomd 461 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 7 | elecg 8789 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | |
| 8 | 4, 6, 7 | pm5.21nd 802 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 Rel wrel 5690 [cec 8743 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ec 8747 | 
| This theorem is referenced by: eqgid 19198 eqg0el 19201 tgptsmscls 24158 pstmfval 33895 ismntop 34027 topfneec 36356 releleccnv 38258 elecres 38278 eleccnvep 38282 inecmo 38356 elecxrn 38387 elec1cnvxrn2 38398 eleccossin 38484 | 
| Copyright terms: Public domain | W3C validator |