MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6202
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6195 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6042 . . . . . 6 Rel 𝐴
3 coi1 6200 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2766 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5919 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6188 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2766 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6142 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2766 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   I cid 5517  ccnv 5619  cres 5622  ccom 5624  Rel wrel 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632
This theorem is referenced by:  relcoi1  6216  funcoeqres  6798  f1ofvswap  7234  relexpaddg  14863  lindfres  21136  lindsmm  21141  psrass1lemOLD  21249  psrass1lem  21252  kgencn2  22814  ustssco  23472  symgcom  31639  cycpmconjv  31696  cycpmconjslem1  31708  erdsze2lem2  33465  poimirlem9  35899  mzpresrename  40842  diophrw  40851  eldioph2  40854  diophren  40905  relexpiidm  41642  relexpaddss  41656  cotrclrcl  41680  funcrngcsetcALT  45917  itcoval1  46369
  Copyright terms: Public domain W3C validator