| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coires1 | Structured version Visualization version GIF version | ||
| Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| coires1 | ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cocnvcnv1 6233 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = (𝐴 ∘ I ) | |
| 2 | relcnv 6078 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
| 3 | coi1 6238 | . . . . . 6 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ∘ I ) = ◡◡𝐴) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = ◡◡𝐴 |
| 5 | 1, 4 | eqtr3i 2755 | . . . 4 ⊢ (𝐴 ∘ I ) = ◡◡𝐴 |
| 6 | 5 | reseq1i 5949 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
| 7 | resco 6226 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) | |
| 8 | 6, 7 | eqtr3i 2755 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) |
| 9 | rescnvcnv 6180 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 10 | 8, 9 | eqtr3i 2755 | 1 ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 I cid 5535 ◡ccnv 5640 ↾ cres 5643 ∘ ccom 5645 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 |
| This theorem is referenced by: relcoi1 6254 funcoeqres 6834 f1ofvswap 7284 relexpaddg 15026 funcrngcsetcALT 20557 lindfres 21739 lindsmm 21744 psrass1lem 21848 kgencn2 23451 ustssco 24109 symgcom 33047 cycpmconjv 33106 cycpmconjslem1 33118 erdsze2lem2 35198 poimirlem9 37630 mzpresrename 42745 diophrw 42754 eldioph2 42757 diophren 42808 relexpiidm 43700 relexpaddss 43714 cotrclrcl 43738 itcoval1 48656 |
| Copyright terms: Public domain | W3C validator |