MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6284
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6277 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6122 . . . . . 6 Rel 𝐴
3 coi1 6282 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2767 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5993 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6270 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2767 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6224 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2767 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   I cid 5577  ccnv 5684  cres 5687  ccom 5689  Rel wrel 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697
This theorem is referenced by:  relcoi1  6298  funcoeqres  6879  f1ofvswap  7326  relexpaddg  15092  funcrngcsetcALT  20641  lindfres  21843  lindsmm  21848  psrass1lem  21952  kgencn2  23565  ustssco  24223  symgcom  33103  cycpmconjv  33162  cycpmconjslem1  33174  erdsze2lem2  35209  poimirlem9  37636  mzpresrename  42761  diophrw  42770  eldioph2  42773  diophren  42824  relexpiidm  43717  relexpaddss  43731  cotrclrcl  43755  itcoval1  48584
  Copyright terms: Public domain W3C validator