MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6213
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6206 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6055 . . . . . 6 Rel 𝐴
3 coi1 6211 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2754 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5926 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6199 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2754 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6153 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2754 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   I cid 5513  ccnv 5618  cres 5621  ccom 5623  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631
This theorem is referenced by:  relcoi1  6226  funcoeqres  6795  f1ofvswap  7243  relexpaddg  14960  funcrngcsetcALT  20526  lindfres  21730  lindsmm  21735  psrass1lem  21839  kgencn2  23442  ustssco  24100  symgcom  33026  cycpmconjv  33085  cycpmconjslem1  33097  erdsze2lem2  35187  poimirlem9  37619  mzpresrename  42733  diophrw  42742  eldioph2  42745  diophren  42796  relexpiidm  43687  relexpaddss  43701  cotrclrcl  43725  itcoval1  48658
  Copyright terms: Public domain W3C validator