MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6253
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6246 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6091 . . . . . 6 Rel 𝐴
3 coi1 6251 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2760 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5962 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6239 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2760 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6193 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2760 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   I cid 5547  ccnv 5653  cres 5656  ccom 5658  Rel wrel 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666
This theorem is referenced by:  relcoi1  6267  funcoeqres  6849  f1ofvswap  7299  relexpaddg  15072  funcrngcsetcALT  20601  lindfres  21783  lindsmm  21788  psrass1lem  21892  kgencn2  23495  ustssco  24153  symgcom  33094  cycpmconjv  33153  cycpmconjslem1  33165  erdsze2lem2  35226  poimirlem9  37653  mzpresrename  42773  diophrw  42782  eldioph2  42785  diophren  42836  relexpiidm  43728  relexpaddss  43742  cotrclrcl  43766  itcoval1  48643
  Copyright terms: Public domain W3C validator