MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6295
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6288 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6134 . . . . . 6 Rel 𝐴
3 coi1 6293 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2770 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 6005 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6281 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2770 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6235 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2770 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   I cid 5592  ccnv 5699  cres 5702  ccom 5704  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by:  relcoi1  6309  funcoeqres  6893  f1ofvswap  7342  relexpaddg  15102  funcrngcsetcALT  20663  lindfres  21866  lindsmm  21871  psrass1lem  21975  kgencn2  23586  ustssco  24244  symgcom  33076  cycpmconjv  33135  cycpmconjslem1  33147  erdsze2lem2  35172  poimirlem9  37589  mzpresrename  42706  diophrw  42715  eldioph2  42718  diophren  42769  relexpiidm  43666  relexpaddss  43680  cotrclrcl  43704  itcoval1  48397
  Copyright terms: Public domain W3C validator