Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coires1 | Structured version Visualization version GIF version |
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
coires1 | ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cocnvcnv1 6195 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = (𝐴 ∘ I ) | |
2 | relcnv 6042 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
3 | coi1 6200 | . . . . . 6 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ∘ I ) = ◡◡𝐴) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = ◡◡𝐴 |
5 | 1, 4 | eqtr3i 2766 | . . . 4 ⊢ (𝐴 ∘ I ) = ◡◡𝐴 |
6 | 5 | reseq1i 5919 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
7 | resco 6188 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) | |
8 | 6, 7 | eqtr3i 2766 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) |
9 | rescnvcnv 6142 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
10 | 8, 9 | eqtr3i 2766 | 1 ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 I cid 5517 ◡ccnv 5619 ↾ cres 5622 ∘ ccom 5624 Rel wrel 5625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 |
This theorem is referenced by: relcoi1 6216 funcoeqres 6798 f1ofvswap 7234 relexpaddg 14863 lindfres 21136 lindsmm 21141 psrass1lemOLD 21249 psrass1lem 21252 kgencn2 22814 ustssco 23472 symgcom 31639 cycpmconjv 31696 cycpmconjslem1 31708 erdsze2lem2 33465 poimirlem9 35899 mzpresrename 40842 diophrw 40851 eldioph2 40854 diophren 40905 relexpiidm 41642 relexpaddss 41656 cotrclrcl 41680 funcrngcsetcALT 45917 itcoval1 46369 |
Copyright terms: Public domain | W3C validator |