MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6225
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6218 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6064 . . . . . 6 Rel 𝐴
3 coi1 6223 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2754 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5935 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6211 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2754 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6165 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2754 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   I cid 5525  ccnv 5630  cres 5633  ccom 5635  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643
This theorem is referenced by:  relcoi1  6239  funcoeqres  6813  f1ofvswap  7263  relexpaddg  14995  funcrngcsetcALT  20561  lindfres  21765  lindsmm  21770  psrass1lem  21874  kgencn2  23477  ustssco  24135  symgcom  33055  cycpmconjv  33114  cycpmconjslem1  33126  erdsze2lem2  35184  poimirlem9  37616  mzpresrename  42731  diophrw  42740  eldioph2  42743  diophren  42794  relexpiidm  43686  relexpaddss  43700  cotrclrcl  43724  itcoval1  48645
  Copyright terms: Public domain W3C validator