MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6263
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6256 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6103 . . . . . 6 Rel 𝐴
3 coi1 6261 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2762 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5977 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6249 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2762 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6203 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2762 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   I cid 5573  ccnv 5675  cres 5678  ccom 5680  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688
This theorem is referenced by:  relcoi1  6277  funcoeqres  6864  f1ofvswap  7306  relexpaddg  15004  lindfres  21597  lindsmm  21602  psrass1lemOLD  21712  psrass1lem  21715  kgencn2  23281  ustssco  23939  symgcom  32502  cycpmconjv  32559  cycpmconjslem1  32571  erdsze2lem2  34481  poimirlem9  36800  mzpresrename  41790  diophrw  41799  eldioph2  41802  diophren  41853  relexpiidm  42757  relexpaddss  42771  cotrclrcl  42795  funcrngcsetcALT  46986  itcoval1  47437
  Copyright terms: Public domain W3C validator