MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6168
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6161 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6012 . . . . . 6 Rel 𝐴
3 coi1 6166 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2768 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5887 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6154 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2768 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6107 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2768 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   I cid 5488  ccnv 5588  cres 5591  ccom 5593  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601
This theorem is referenced by:  relcoi1  6181  funcoeqres  6747  f1ofvswap  7178  relexpaddg  14764  lindfres  21030  lindsmm  21035  psrass1lemOLD  21143  psrass1lem  21146  kgencn2  22708  ustssco  23366  symgcom  31352  cycpmconjv  31409  cycpmconjslem1  31421  erdsze2lem2  33166  poimirlem9  35786  mzpresrename  40572  diophrw  40581  eldioph2  40584  diophren  40635  relexpiidm  41312  relexpaddss  41326  cotrclrcl  41350  funcrngcsetcALT  45557  itcoval1  46009
  Copyright terms: Public domain W3C validator