![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coires1 | Structured version Visualization version GIF version |
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
coires1 | ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cocnvcnv1 6288 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = (𝐴 ∘ I ) | |
2 | relcnv 6134 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
3 | coi1 6293 | . . . . . 6 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ∘ I ) = ◡◡𝐴) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = ◡◡𝐴 |
5 | 1, 4 | eqtr3i 2770 | . . . 4 ⊢ (𝐴 ∘ I ) = ◡◡𝐴 |
6 | 5 | reseq1i 6005 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
7 | resco 6281 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) | |
8 | 6, 7 | eqtr3i 2770 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) |
9 | rescnvcnv 6235 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
10 | 8, 9 | eqtr3i 2770 | 1 ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 I cid 5592 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 |
This theorem is referenced by: relcoi1 6309 funcoeqres 6893 f1ofvswap 7342 relexpaddg 15102 funcrngcsetcALT 20663 lindfres 21866 lindsmm 21871 psrass1lem 21975 kgencn2 23586 ustssco 24244 symgcom 33076 cycpmconjv 33135 cycpmconjslem1 33147 erdsze2lem2 35172 poimirlem9 37589 mzpresrename 42706 diophrw 42715 eldioph2 42718 diophren 42769 relexpiidm 43666 relexpaddss 43680 cotrclrcl 43704 itcoval1 48397 |
Copyright terms: Public domain | W3C validator |