Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coires1 | Structured version Visualization version GIF version |
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
coires1 | ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cocnvcnv1 6150 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = (𝐴 ∘ I ) | |
2 | relcnv 6001 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
3 | coi1 6155 | . . . . . 6 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ∘ I ) = ◡◡𝐴) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = ◡◡𝐴 |
5 | 1, 4 | eqtr3i 2768 | . . . 4 ⊢ (𝐴 ∘ I ) = ◡◡𝐴 |
6 | 5 | reseq1i 5876 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
7 | resco 6143 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) | |
8 | 6, 7 | eqtr3i 2768 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) |
9 | rescnvcnv 6096 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
10 | 8, 9 | eqtr3i 2768 | 1 ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 I cid 5479 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 |
This theorem is referenced by: relcoi1 6170 funcoeqres 6730 f1ofvswap 7158 relexpaddg 14692 lindfres 20940 lindsmm 20945 psrass1lemOLD 21053 psrass1lem 21056 kgencn2 22616 ustssco 23274 symgcom 31254 cycpmconjv 31311 cycpmconjslem1 31323 erdsze2lem2 33066 poimirlem9 35713 mzpresrename 40488 diophrw 40497 eldioph2 40500 diophren 40551 relexpiidm 41201 relexpaddss 41215 cotrclrcl 41239 funcrngcsetcALT 45445 itcoval1 45897 |
Copyright terms: Public domain | W3C validator |