MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6240
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6233 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6078 . . . . . 6 Rel 𝐴
3 coi1 6238 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2755 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5949 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6226 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2755 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6180 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2755 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   I cid 5535  ccnv 5640  cres 5643  ccom 5645  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653
This theorem is referenced by:  relcoi1  6254  funcoeqres  6834  f1ofvswap  7284  relexpaddg  15026  funcrngcsetcALT  20557  lindfres  21739  lindsmm  21744  psrass1lem  21848  kgencn2  23451  ustssco  24109  symgcom  33047  cycpmconjv  33106  cycpmconjslem1  33118  erdsze2lem2  35198  poimirlem9  37630  mzpresrename  42745  diophrw  42754  eldioph2  42757  diophren  42808  relexpiidm  43700  relexpaddss  43714  cotrclrcl  43738  itcoval1  48656
  Copyright terms: Public domain W3C validator