MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6286
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6279 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6125 . . . . . 6 Rel 𝐴
3 coi1 6284 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2765 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5996 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6272 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2765 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6226 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2765 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   I cid 5582  ccnv 5688  cres 5691  ccom 5693  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701
This theorem is referenced by:  relcoi1  6300  funcoeqres  6880  f1ofvswap  7326  relexpaddg  15089  funcrngcsetcALT  20658  lindfres  21861  lindsmm  21866  psrass1lem  21970  kgencn2  23581  ustssco  24239  symgcom  33086  cycpmconjv  33145  cycpmconjslem1  33157  erdsze2lem2  35189  poimirlem9  37616  mzpresrename  42738  diophrw  42747  eldioph2  42750  diophren  42801  relexpiidm  43694  relexpaddss  43708  cotrclrcl  43732  itcoval1  48513
  Copyright terms: Public domain W3C validator