MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6212
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6205 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6052 . . . . . 6 Rel 𝐴
3 coi1 6210 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2756 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5923 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6197 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2756 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6151 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2756 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   I cid 5508  ccnv 5613  cres 5616  ccom 5618  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626
This theorem is referenced by:  relcoi1  6225  funcoeqres  6794  f1ofvswap  7240  relexpaddg  14960  funcrngcsetcALT  20556  lindfres  21760  lindsmm  21765  psrass1lem  21869  kgencn2  23472  ustssco  24130  symgcom  33052  cycpmconjv  33111  cycpmconjslem1  33123  erdsze2lem2  35248  poimirlem9  37679  mzpresrename  42853  diophrw  42862  eldioph2  42865  diophren  42916  relexpiidm  43807  relexpaddss  43821  cotrclrcl  43845  itcoval1  48774
  Copyright terms: Public domain W3C validator