MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coires1 Structured version   Visualization version   GIF version

Theorem coires1 6157
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 6150 . . . . 5 (𝐴 ∘ I ) = (𝐴 ∘ I )
2 relcnv 6001 . . . . . 6 Rel 𝐴
3 coi1 6155 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
51, 4eqtr3i 2768 . . . 4 (𝐴 ∘ I ) = 𝐴
65reseq1i 5876 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴𝐵)
7 resco 6143 . . 3 ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
86, 7eqtr3i 2768 . 2 (𝐴𝐵) = (𝐴 ∘ ( I ↾ 𝐵))
9 rescnvcnv 6096 . 2 (𝐴𝐵) = (𝐴𝐵)
108, 9eqtr3i 2768 1 (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   I cid 5479  ccnv 5579  cres 5582  ccom 5584  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592
This theorem is referenced by:  relcoi1  6170  funcoeqres  6730  f1ofvswap  7158  relexpaddg  14692  lindfres  20940  lindsmm  20945  psrass1lemOLD  21053  psrass1lem  21056  kgencn2  22616  ustssco  23274  symgcom  31254  cycpmconjv  31311  cycpmconjslem1  31323  erdsze2lem2  33066  poimirlem9  35713  mzpresrename  40488  diophrw  40497  eldioph2  40500  diophren  40551  relexpiidm  41201  relexpaddss  41215  cotrclrcl  41239  funcrngcsetcALT  45445  itcoval1  45897
  Copyright terms: Public domain W3C validator