| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coires1 | Structured version Visualization version GIF version | ||
| Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| coires1 | ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cocnvcnv1 6230 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = (𝐴 ∘ I ) | |
| 2 | relcnv 6075 | . . . . . 6 ⊢ Rel ◡◡𝐴 | |
| 3 | coi1 6235 | . . . . . 6 ⊢ (Rel ◡◡𝐴 → (◡◡𝐴 ∘ I ) = ◡◡𝐴) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (◡◡𝐴 ∘ I ) = ◡◡𝐴 |
| 5 | 1, 4 | eqtr3i 2754 | . . . 4 ⊢ (𝐴 ∘ I ) = ◡◡𝐴 |
| 6 | 5 | reseq1i 5946 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
| 7 | resco 6223 | . . 3 ⊢ ((𝐴 ∘ I ) ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) | |
| 8 | 6, 7 | eqtr3i 2754 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ∘ ( I ↾ 𝐵)) |
| 9 | rescnvcnv 6177 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 10 | 8, 9 | eqtr3i 2754 | 1 ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 I cid 5532 ◡ccnv 5637 ↾ cres 5640 ∘ ccom 5642 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 |
| This theorem is referenced by: relcoi1 6251 funcoeqres 6831 f1ofvswap 7281 relexpaddg 15019 funcrngcsetcALT 20550 lindfres 21732 lindsmm 21737 psrass1lem 21841 kgencn2 23444 ustssco 24102 symgcom 33040 cycpmconjv 33099 cycpmconjslem1 33111 erdsze2lem2 35191 poimirlem9 37623 mzpresrename 42738 diophrw 42747 eldioph2 42750 diophren 42801 relexpiidm 43693 relexpaddss 43707 cotrclrcl 43731 itcoval1 48652 |
| Copyright terms: Public domain | W3C validator |