Proof of Theorem f1oresrab
Step | Hyp | Ref
| Expression |
1 | | f1oresrab.2 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
2 | | f1ofun 6702 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
3 | | funcnvcnv 6485 |
. . . 4
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
4 | 1, 2, 3 | 3syl 18 |
. . 3
⊢ (𝜑 → Fun ◡◡𝐹) |
5 | | f1ocnv 6712 |
. . . . . 6
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
6 | | f1of1 6699 |
. . . . . 6
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵–1-1→𝐴) |
7 | 1, 5, 6 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ◡𝐹:𝐵–1-1→𝐴) |
8 | | ssrab2 4009 |
. . . . 5
⊢ {𝑦 ∈ 𝐵 ∣ 𝜒} ⊆ 𝐵 |
9 | | f1ores 6714 |
. . . . 5
⊢ ((◡𝐹:𝐵–1-1→𝐴 ∧ {𝑦 ∈ 𝐵 ∣ 𝜒} ⊆ 𝐵) → (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒})) |
10 | 7, 8, 9 | sylancl 585 |
. . . 4
⊢ (𝜑 → (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒})) |
11 | | f1oresrab.1 |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
12 | 11 | mptpreima 6130 |
. . . . . 6
⊢ (◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒}} |
13 | | f1oresrab.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝜓)) |
14 | 13 | 3expia 1119 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐶 → (𝜒 ↔ 𝜓))) |
15 | 14 | alrimiv 1931 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 = 𝐶 → (𝜒 ↔ 𝜓))) |
16 | | f1of 6700 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
17 | 1, 16 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
18 | 11 | fmpt 6966 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
19 | 17, 18 | sylibr 233 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
20 | 19 | r19.21bi 3132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
21 | | elrab3t 3616 |
. . . . . . . 8
⊢
((∀𝑦(𝑦 = 𝐶 → (𝜒 ↔ 𝜓)) ∧ 𝐶 ∈ 𝐵) → (𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒} ↔ 𝜓)) |
22 | 15, 20, 21 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒} ↔ 𝜓)) |
23 | 22 | rabbidva 3402 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒}} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
24 | 12, 23 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
25 | 24 | f1oeq3d 6697 |
. . . 4
⊢ (𝜑 → ((◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) ↔ (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓})) |
26 | 10, 25 | mpbid 231 |
. . 3
⊢ (𝜑 → (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓}) |
27 | | f1orescnv 6715 |
. . 3
⊢ ((Fun
◡◡𝐹 ∧ (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓}) → (◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
28 | 4, 26, 27 | syl2anc 583 |
. 2
⊢ (𝜑 → (◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
29 | | rescnvcnv 6096 |
. . 3
⊢ (◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) = (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
30 | | f1oeq1 6688 |
. . 3
⊢ ((◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) = (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) → ((◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒})) |
31 | 29, 30 | ax-mp 5 |
. 2
⊢ ((◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
32 | 28, 31 | sylib 217 |
1
⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |