MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oresrab Structured version   Visualization version   GIF version

Theorem f1oresrab 7122
Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
Hypotheses
Ref Expression
f1oresrab.1 𝐹 = (𝑥𝐴𝐶)
f1oresrab.2 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresrab.3 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝜓))
Assertion
Ref Expression
f1oresrab (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐶(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem f1oresrab
StepHypRef Expression
1 f1oresrab.2 . . . 4 (𝜑𝐹:𝐴1-1-onto𝐵)
2 f1ofun 6825 . . . 4 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
3 funcnvcnv 6608 . . . 4 (Fun 𝐹 → Fun 𝐹)
41, 2, 33syl 18 . . 3 (𝜑 → Fun 𝐹)
5 f1ocnv 6835 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
6 f1of1 6822 . . . . . 6 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵1-1𝐴)
71, 5, 63syl 18 . . . . 5 (𝜑𝐹:𝐵1-1𝐴)
8 ssrab2 4060 . . . . 5 {𝑦𝐵𝜒} ⊆ 𝐵
9 f1ores 6837 . . . . 5 ((𝐹:𝐵1-1𝐴 ∧ {𝑦𝐵𝜒} ⊆ 𝐵) → (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}))
107, 8, 9sylancl 586 . . . 4 (𝜑 → (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}))
11 f1oresrab.1 . . . . . . 7 𝐹 = (𝑥𝐴𝐶)
1211mptpreima 6232 . . . . . 6 (𝐹 “ {𝑦𝐵𝜒}) = {𝑥𝐴𝐶 ∈ {𝑦𝐵𝜒}}
13 f1oresrab.3 . . . . . . . . . 10 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝜓))
14133expia 1121 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑦 = 𝐶 → (𝜒𝜓)))
1514alrimiv 1927 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑦(𝑦 = 𝐶 → (𝜒𝜓)))
16 f1of 6823 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
171, 16syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
1811fmpt 7105 . . . . . . . . . 10 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
1917, 18sylibr 234 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
2019r19.21bi 3238 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝐵)
21 elrab3t 3675 . . . . . . . 8 ((∀𝑦(𝑦 = 𝐶 → (𝜒𝜓)) ∧ 𝐶𝐵) → (𝐶 ∈ {𝑦𝐵𝜒} ↔ 𝜓))
2215, 20, 21syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐶 ∈ {𝑦𝐵𝜒} ↔ 𝜓))
2322rabbidva 3427 . . . . . 6 (𝜑 → {𝑥𝐴𝐶 ∈ {𝑦𝐵𝜒}} = {𝑥𝐴𝜓})
2412, 23eqtrid 2783 . . . . 5 (𝜑 → (𝐹 “ {𝑦𝐵𝜒}) = {𝑥𝐴𝜓})
2524f1oeq3d 6820 . . . 4 (𝜑 → ((𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}) ↔ (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓}))
2610, 25mpbid 232 . . 3 (𝜑 → (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓})
27 f1orescnv 6838 . . 3 ((Fun 𝐹 ∧ (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓}) → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
284, 26, 27syl2anc 584 . 2 (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
29 rescnvcnv 6198 . . 3 (𝐹 ↾ {𝑥𝐴𝜓}) = (𝐹 ↾ {𝑥𝐴𝜓})
30 f1oeq1 6811 . . 3 ((𝐹 ↾ {𝑥𝐴𝜓}) = (𝐹 ↾ {𝑥𝐴𝜓}) → ((𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒}))
3129, 30ax-mp 5 . 2 ((𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
3228, 31sylib 218 1 (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3052  {crab 3420  wss 3931  cmpt 5206  ccnv 5658  cres 5661  cima 5662  Fun wfun 6530  wf 6532  1-1wf1 6533  1-1-ontowf1o 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543
This theorem is referenced by:  f1ossf1o  7123  wlknwwlksnbij  29875  wlksnwwlknvbij  29895  clwlknf1oclwwlkn  30070  clwwlkvbij  30099  rabfodom  32491  fpwrelmapffs  32716  eulerpartlemn  34418  f1oresf1orab  47285
  Copyright terms: Public domain W3C validator