MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres3a Structured version   Visualization version   GIF version

Theorem dvres3a 24506
Description: Restriction of a complex differentiable function to the reals. This version of dvres3 24505 assumes that 𝐹 is differentiable on its domain, but does not require 𝐹 to be differentiable on the whole real line. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
dvres3a.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvres3a (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆 D (𝐹𝑆)) = ((ℂ D 𝐹) ↾ 𝑆))

Proof of Theorem dvres3a
StepHypRef Expression
1 reldv 24462 . . 3 Rel (𝑆 D (𝐹𝑆))
2 recnprss 24496 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
32ad2antrr 724 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → 𝑆 ⊆ ℂ)
4 simplr 767 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → 𝐹:𝐴⟶ℂ)
5 inss2 4206 . . . . . . 7 (𝑆𝐴) ⊆ 𝐴
6 fssres 6539 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ (𝑆𝐴) ⊆ 𝐴) → (𝐹 ↾ (𝑆𝐴)):(𝑆𝐴)⟶ℂ)
74, 5, 6sylancl 588 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝐹 ↾ (𝑆𝐴)):(𝑆𝐴)⟶ℂ)
8 rescom 5874 . . . . . . . . 9 ((𝐹𝐴) ↾ 𝑆) = ((𝐹𝑆) ↾ 𝐴)
9 resres 5861 . . . . . . . . 9 ((𝐹𝑆) ↾ 𝐴) = (𝐹 ↾ (𝑆𝐴))
108, 9eqtri 2844 . . . . . . . 8 ((𝐹𝐴) ↾ 𝑆) = (𝐹 ↾ (𝑆𝐴))
11 ffn 6509 . . . . . . . . . 10 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
12 fnresdm 6461 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
134, 11, 123syl 18 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝐹𝐴) = 𝐹)
1413reseq1d 5847 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ((𝐹𝐴) ↾ 𝑆) = (𝐹𝑆))
1510, 14syl5eqr 2870 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝐹 ↾ (𝑆𝐴)) = (𝐹𝑆))
1615feq1d 6494 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ((𝐹 ↾ (𝑆𝐴)):(𝑆𝐴)⟶ℂ ↔ (𝐹𝑆):(𝑆𝐴)⟶ℂ))
177, 16mpbid 234 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝐹𝑆):(𝑆𝐴)⟶ℂ)
18 inss1 4205 . . . . . 6 (𝑆𝐴) ⊆ 𝑆
1918a1i 11 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆𝐴) ⊆ 𝑆)
203, 17, 19dvbss 24493 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → dom (𝑆 D (𝐹𝑆)) ⊆ (𝑆𝐴))
21 dmres 5870 . . . . 5 dom ((ℂ D 𝐹) ↾ 𝑆) = (𝑆 ∩ dom (ℂ D 𝐹))
22 simprr 771 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → dom (ℂ D 𝐹) = 𝐴)
2322ineq2d 4189 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆 ∩ dom (ℂ D 𝐹)) = (𝑆𝐴))
2421, 23syl5eq 2868 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → dom ((ℂ D 𝐹) ↾ 𝑆) = (𝑆𝐴))
2520, 24sseqtrrd 4008 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → dom (𝑆 D (𝐹𝑆)) ⊆ dom ((ℂ D 𝐹) ↾ 𝑆))
26 relssres 5888 . . 3 ((Rel (𝑆 D (𝐹𝑆)) ∧ dom (𝑆 D (𝐹𝑆)) ⊆ dom ((ℂ D 𝐹) ↾ 𝑆)) → ((𝑆 D (𝐹𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = (𝑆 D (𝐹𝑆)))
271, 25, 26sylancr 589 . 2 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ((𝑆 D (𝐹𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = (𝑆 D (𝐹𝑆)))
28 dvfg 24498 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹𝑆)):dom (𝑆 D (𝐹𝑆))⟶ℂ)
2928ad2antrr 724 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆 D (𝐹𝑆)):dom (𝑆 D (𝐹𝑆))⟶ℂ)
3029ffund 6513 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → Fun (𝑆 D (𝐹𝑆)))
31 ssidd 3990 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ℂ ⊆ ℂ)
32 dvres3a.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
3332cnfldtopon 23385 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
34 simprl 769 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → 𝐴𝐽)
35 toponss 21529 . . . . 5 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐴𝐽) → 𝐴 ⊆ ℂ)
3633, 34, 35sylancr 589 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → 𝐴 ⊆ ℂ)
37 dvres2 24504 . . . 4 (((ℂ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ ℂ)) → ((ℂ D 𝐹) ↾ 𝑆) ⊆ (𝑆 D (𝐹𝑆)))
3831, 4, 36, 3, 37syl22anc 836 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ((ℂ D 𝐹) ↾ 𝑆) ⊆ (𝑆 D (𝐹𝑆)))
39 funssres 6393 . . 3 ((Fun (𝑆 D (𝐹𝑆)) ∧ ((ℂ D 𝐹) ↾ 𝑆) ⊆ (𝑆 D (𝐹𝑆))) → ((𝑆 D (𝐹𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆))
4030, 38, 39syl2anc 586 . 2 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ((𝑆 D (𝐹𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆))
4127, 40eqtr3d 2858 1 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆 D (𝐹𝑆)) = ((ℂ D 𝐹) ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cin 3935  wss 3936  {cpr 4563  dom cdm 5550  cres 5552  Rel wrel 5555  Fun wfun 6344   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  TopOpenctopn 16689  fldccnfld 20539  TopOnctopon 21512   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cnp 21830  df-haus 21917  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-limc 24458  df-dv 24459
This theorem is referenced by:  dvnres  24522  dvmptres3  24547
  Copyright terms: Public domain W3C validator