| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvres3a | Structured version Visualization version GIF version | ||
| Description: Restriction of a complex differentiable function to the reals. This version of dvres3 25948 assumes that 𝐹 is differentiable on its domain, but does not require 𝐹 to be differentiable on the whole real line. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvres3a.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| dvres3a | ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆 D (𝐹 ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldv 25905 | . . 3 ⊢ Rel (𝑆 D (𝐹 ↾ 𝑆)) | |
| 2 | recnprss 25939 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 3 | 2 | ad2antrr 726 | . . . . 5 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → 𝑆 ⊆ ℂ) |
| 4 | simplr 769 | . . . . . . 7 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → 𝐹:𝐴⟶ℂ) | |
| 5 | inss2 4238 | . . . . . . 7 ⊢ (𝑆 ∩ 𝐴) ⊆ 𝐴 | |
| 6 | fssres 6774 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ (𝑆 ∩ 𝐴) ⊆ 𝐴) → (𝐹 ↾ (𝑆 ∩ 𝐴)):(𝑆 ∩ 𝐴)⟶ℂ) | |
| 7 | 4, 5, 6 | sylancl 586 | . . . . . 6 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝐹 ↾ (𝑆 ∩ 𝐴)):(𝑆 ∩ 𝐴)⟶ℂ) |
| 8 | rescom 6020 | . . . . . . . . 9 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝑆) = ((𝐹 ↾ 𝑆) ↾ 𝐴) | |
| 9 | resres 6010 | . . . . . . . . 9 ⊢ ((𝐹 ↾ 𝑆) ↾ 𝐴) = (𝐹 ↾ (𝑆 ∩ 𝐴)) | |
| 10 | 8, 9 | eqtri 2765 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐴) ↾ 𝑆) = (𝐹 ↾ (𝑆 ∩ 𝐴)) |
| 11 | ffn 6736 | . . . . . . . . . 10 ⊢ (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴) | |
| 12 | fnresdm 6687 | . . . . . . . . . 10 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 13 | 4, 11, 12 | 3syl 18 | . . . . . . . . 9 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝐹 ↾ 𝐴) = 𝐹) |
| 14 | 13 | reseq1d 5996 | . . . . . . . 8 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ((𝐹 ↾ 𝐴) ↾ 𝑆) = (𝐹 ↾ 𝑆)) |
| 15 | 10, 14 | eqtr3id 2791 | . . . . . . 7 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝐹 ↾ (𝑆 ∩ 𝐴)) = (𝐹 ↾ 𝑆)) |
| 16 | 15 | feq1d 6720 | . . . . . 6 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ((𝐹 ↾ (𝑆 ∩ 𝐴)):(𝑆 ∩ 𝐴)⟶ℂ ↔ (𝐹 ↾ 𝑆):(𝑆 ∩ 𝐴)⟶ℂ)) |
| 17 | 7, 16 | mpbid 232 | . . . . 5 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝐹 ↾ 𝑆):(𝑆 ∩ 𝐴)⟶ℂ) |
| 18 | inss1 4237 | . . . . . 6 ⊢ (𝑆 ∩ 𝐴) ⊆ 𝑆 | |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆 ∩ 𝐴) ⊆ 𝑆) |
| 20 | 3, 17, 19 | dvbss 25936 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → dom (𝑆 D (𝐹 ↾ 𝑆)) ⊆ (𝑆 ∩ 𝐴)) |
| 21 | dmres 6030 | . . . . 5 ⊢ dom ((ℂ D 𝐹) ↾ 𝑆) = (𝑆 ∩ dom (ℂ D 𝐹)) | |
| 22 | simprr 773 | . . . . . 6 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → dom (ℂ D 𝐹) = 𝐴) | |
| 23 | 22 | ineq2d 4220 | . . . . 5 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆 ∩ dom (ℂ D 𝐹)) = (𝑆 ∩ 𝐴)) |
| 24 | 21, 23 | eqtrid 2789 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → dom ((ℂ D 𝐹) ↾ 𝑆) = (𝑆 ∩ 𝐴)) |
| 25 | 20, 24 | sseqtrrd 4021 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → dom (𝑆 D (𝐹 ↾ 𝑆)) ⊆ dom ((ℂ D 𝐹) ↾ 𝑆)) |
| 26 | relssres 6040 | . . 3 ⊢ ((Rel (𝑆 D (𝐹 ↾ 𝑆)) ∧ dom (𝑆 D (𝐹 ↾ 𝑆)) ⊆ dom ((ℂ D 𝐹) ↾ 𝑆)) → ((𝑆 D (𝐹 ↾ 𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = (𝑆 D (𝐹 ↾ 𝑆))) | |
| 27 | 1, 25, 26 | sylancr 587 | . 2 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ((𝑆 D (𝐹 ↾ 𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = (𝑆 D (𝐹 ↾ 𝑆))) |
| 28 | dvfg 25941 | . . . . 5 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹 ↾ 𝑆)):dom (𝑆 D (𝐹 ↾ 𝑆))⟶ℂ) | |
| 29 | 28 | ad2antrr 726 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆 D (𝐹 ↾ 𝑆)):dom (𝑆 D (𝐹 ↾ 𝑆))⟶ℂ) |
| 30 | 29 | ffund 6740 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → Fun (𝑆 D (𝐹 ↾ 𝑆))) |
| 31 | ssidd 4007 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ℂ ⊆ ℂ) | |
| 32 | dvres3a.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 33 | 32 | cnfldtopon 24803 | . . . . 5 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 34 | simprl 771 | . . . . 5 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → 𝐴 ∈ 𝐽) | |
| 35 | toponss 22933 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ℂ) | |
| 36 | 33, 34, 35 | sylancr 587 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → 𝐴 ⊆ ℂ) |
| 37 | dvres2 25947 | . . . 4 ⊢ (((ℂ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ ℂ)) → ((ℂ D 𝐹) ↾ 𝑆) ⊆ (𝑆 D (𝐹 ↾ 𝑆))) | |
| 38 | 31, 4, 36, 3, 37 | syl22anc 839 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ((ℂ D 𝐹) ↾ 𝑆) ⊆ (𝑆 D (𝐹 ↾ 𝑆))) |
| 39 | funssres 6610 | . . 3 ⊢ ((Fun (𝑆 D (𝐹 ↾ 𝑆)) ∧ ((ℂ D 𝐹) ↾ 𝑆) ⊆ (𝑆 D (𝐹 ↾ 𝑆))) → ((𝑆 D (𝐹 ↾ 𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆)) | |
| 40 | 30, 38, 39 | syl2anc 584 | . 2 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → ((𝑆 D (𝐹 ↾ 𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆)) |
| 41 | 27, 40 | eqtr3d 2779 | 1 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ∈ 𝐽 ∧ dom (ℂ D 𝐹) = 𝐴)) → (𝑆 D (𝐹 ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 ⊆ wss 3951 {cpr 4628 dom cdm 5685 ↾ cres 5687 Rel wrel 5690 Fun wfun 6555 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 TopOpenctopn 17466 ℂfldccnfld 21364 TopOnctopon 22916 D cdv 25898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fi 9451 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-rest 17467 df-topn 17468 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cnp 23236 df-haus 23323 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-limc 25901 df-dv 25902 |
| This theorem is referenced by: dvnres 25967 dvmptres3 25994 |
| Copyright terms: Public domain | W3C validator |