Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnres Structured version   Visualization version   GIF version

Theorem cpnres 24221
 Description: The restriction of a Cn function is Cn. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnres ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹𝑆) ∈ ((Cn𝑆)‘𝑁))

Proof of Theorem cpnres
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝐹 ∈ ((Cn‘ℂ)‘𝑁))
2 ssid 3916 . . . . . 6 ℂ ⊆ ℂ
3 elfvdm 6577 . . . . . . . 8 (𝐹 ∈ ((Cn‘ℂ)‘𝑁) → 𝑁 ∈ dom (Cn‘ℂ))
43adantl 482 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝑁 ∈ dom (Cn‘ℂ))
5 fncpn 24217 . . . . . . . . 9 (ℂ ⊆ ℂ → (Cn‘ℂ) Fn ℕ0)
62, 5ax-mp 5 . . . . . . . 8 (Cn‘ℂ) Fn ℕ0
7 fndm 6332 . . . . . . . 8 ((Cn‘ℂ) Fn ℕ0 → dom (Cn‘ℂ) = ℕ0)
86, 7mp1i 13 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → dom (Cn‘ℂ) = ℕ0)
94, 8eleqtrd 2887 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝑁 ∈ ℕ0)
10 elcpn 24218 . . . . . 6 ((ℂ ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((Cn‘ℂ)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))
112, 9, 10sylancr 587 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹 ∈ ((Cn‘ℂ)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))
121, 11mpbid 233 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ)))
1312simpld 495 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝐹 ∈ (ℂ ↑pm ℂ))
14 pmresg 8291 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (𝐹𝑆) ∈ (ℂ ↑pm 𝑆))
1513, 14syldan 591 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹𝑆) ∈ (ℂ ↑pm 𝑆))
16 simpl 483 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝑆 ∈ {ℝ, ℂ})
1712simprd 496 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))
18 cncff 23188 . . . . . 6 (((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ) → ((ℂ D𝑛 𝐹)‘𝑁):dom 𝐹⟶ℂ)
1917, 18syl 17 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((ℂ D𝑛 𝐹)‘𝑁):dom 𝐹⟶ℂ)
2019fdmd 6398 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹)
21 dvnres 24215 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑁 ∈ ℕ0) ∧ dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
2216, 13, 9, 20, 21syl31anc 1366 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
23 resres 5754 . . . . . . 7 ((((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ↾ dom 𝐹) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹))
24 rescom 5767 . . . . . . 7 ((((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ↾ dom 𝐹) = ((((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) ↾ 𝑆)
2523, 24eqtr3i 2823 . . . . . 6 (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) = ((((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) ↾ 𝑆)
26 ffn 6389 . . . . . . . 8 (((ℂ D𝑛 𝐹)‘𝑁):dom 𝐹⟶ℂ → ((ℂ D𝑛 𝐹)‘𝑁) Fn dom 𝐹)
27 fnresdm 6343 . . . . . . . 8 (((ℂ D𝑛 𝐹)‘𝑁) Fn dom 𝐹 → (((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) = ((ℂ D𝑛 𝐹)‘𝑁))
2819, 26, 273syl 18 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) = ((ℂ D𝑛 𝐹)‘𝑁))
2928reseq1d 5740 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
3025, 29syl5eq 2845 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
31 inss2 4132 . . . . . 6 (𝑆 ∩ dom 𝐹) ⊆ dom 𝐹
32 rescncf 23192 . . . . . 6 ((𝑆 ∩ dom 𝐹) ⊆ dom 𝐹 → (((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) ∈ ((𝑆 ∩ dom 𝐹)–cn→ℂ)))
3331, 17, 32mpsyl 68 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) ∈ ((𝑆 ∩ dom 𝐹)–cn→ℂ))
3430, 33eqeltrrd 2886 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ∈ ((𝑆 ∩ dom 𝐹)–cn→ℂ))
35 dmres 5763 . . . . 5 dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)
3635oveq1i 7033 . . . 4 (dom (𝐹𝑆)–cn→ℂ) = ((𝑆 ∩ dom 𝐹)–cn→ℂ)
3734, 36syl6eleqr 2896 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ∈ (dom (𝐹𝑆)–cn→ℂ))
3822, 37eqeltrd 2885 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) ∈ (dom (𝐹𝑆)–cn→ℂ))
39 recnprss 24189 . . 3 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
40 elcpn 24218 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐹𝑆) ∈ ((Cn𝑆)‘𝑁) ↔ ((𝐹𝑆) ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) ∈ (dom (𝐹𝑆)–cn→ℂ))))
4139, 9, 40syl2an2r 681 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((𝐹𝑆) ∈ ((Cn𝑆)‘𝑁) ↔ ((𝐹𝑆) ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) ∈ (dom (𝐹𝑆)–cn→ℂ))))
4215, 38, 41mpbir2and 709 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹𝑆) ∈ ((Cn𝑆)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1525   ∈ wcel 2083   ∩ cin 3864   ⊆ wss 3865  {cpr 4480  dom cdm 5450   ↾ cres 5452   Fn wfn 6227  ⟶wf 6228  ‘cfv 6232  (class class class)co 7023   ↑pm cpm 8264  ℂcc 10388  ℝcr 10389  ℕ0cn0 11751  –cn→ccncf 23171   D𝑛 cdvn 24149  Cnccpn 24150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fi 8728  df-sup 8759  df-inf 8760  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-icc 12599  df-fz 12747  df-seq 13224  df-exp 13284  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-plusg 16411  df-mulr 16412  df-starv 16413  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-rest 16529  df-topn 16530  df-topgen 16550  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-fbas 20228  df-fg 20229  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cld 21315  df-ntr 21316  df-cls 21317  df-nei 21394  df-lp 21432  df-perf 21433  df-cnp 21524  df-haus 21611  df-fil 22142  df-fm 22234  df-flim 22235  df-flf 22236  df-xms 22617  df-ms 22618  df-cncf 23173  df-limc 24151  df-dv 24152  df-dvn 24153  df-cpn 24154 This theorem is referenced by:  aalioulem3  24610
 Copyright terms: Public domain W3C validator