MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnres Structured version   Visualization version   GIF version

Theorem cpnres 25872
Description: The restriction of a 𝓑C𝑛 function is 𝓑C𝑛. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnres ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → (𝐹𝑆) ∈ ((𝓑C𝑛𝑆)‘𝑁))

Proof of Theorem cpnres
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁))
2 ssid 3966 . . . . . 6 ℂ ⊆ ℂ
3 elfvdm 6877 . . . . . . . 8 (𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁) → 𝑁 ∈ dom (𝓑C𝑛‘ℂ))
43adantl 481 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → 𝑁 ∈ dom (𝓑C𝑛‘ℂ))
5 fncpn 25868 . . . . . . . . 9 (ℂ ⊆ ℂ → (𝓑C𝑛‘ℂ) Fn ℕ0)
62, 5ax-mp 5 . . . . . . . 8 (𝓑C𝑛‘ℂ) Fn ℕ0
7 fndm 6603 . . . . . . . 8 ((𝓑C𝑛‘ℂ) Fn ℕ0 → dom (𝓑C𝑛‘ℂ) = ℕ0)
86, 7mp1i 13 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → dom (𝓑C𝑛‘ℂ) = ℕ0)
94, 8eleqtrd 2830 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → 𝑁 ∈ ℕ0)
10 elcpn 25869 . . . . . 6 ((ℂ ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))
112, 9, 10sylancr 587 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → (𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))
121, 11mpbid 232 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ)))
1312simpld 494 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → 𝐹 ∈ (ℂ ↑pm ℂ))
14 pmresg 8820 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (𝐹𝑆) ∈ (ℂ ↑pm 𝑆))
1513, 14syldan 591 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → (𝐹𝑆) ∈ (ℂ ↑pm 𝑆))
16 simpl 482 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → 𝑆 ∈ {ℝ, ℂ})
1712simprd 495 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))
18 cncff 24819 . . . . . 6 (((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ) → ((ℂ D𝑛 𝐹)‘𝑁):dom 𝐹⟶ℂ)
1917, 18syl 17 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → ((ℂ D𝑛 𝐹)‘𝑁):dom 𝐹⟶ℂ)
2019fdmd 6680 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹)
21 dvnres 25866 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑁 ∈ ℕ0) ∧ dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
2216, 13, 9, 20, 21syl31anc 1375 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
23 resres 5952 . . . . . . 7 ((((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ↾ dom 𝐹) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹))
24 rescom 5962 . . . . . . 7 ((((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ↾ dom 𝐹) = ((((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) ↾ 𝑆)
2523, 24eqtr3i 2754 . . . . . 6 (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) = ((((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) ↾ 𝑆)
26 ffn 6670 . . . . . . . 8 (((ℂ D𝑛 𝐹)‘𝑁):dom 𝐹⟶ℂ → ((ℂ D𝑛 𝐹)‘𝑁) Fn dom 𝐹)
27 fnresdm 6619 . . . . . . . 8 (((ℂ D𝑛 𝐹)‘𝑁) Fn dom 𝐹 → (((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) = ((ℂ D𝑛 𝐹)‘𝑁))
2819, 26, 273syl 18 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) = ((ℂ D𝑛 𝐹)‘𝑁))
2928reseq1d 5938 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → ((((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
3025, 29eqtrid 2776 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
31 inss2 4197 . . . . . 6 (𝑆 ∩ dom 𝐹) ⊆ dom 𝐹
32 rescncf 24823 . . . . . 6 ((𝑆 ∩ dom 𝐹) ⊆ dom 𝐹 → (((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) ∈ ((𝑆 ∩ dom 𝐹)–cn→ℂ)))
3331, 17, 32mpsyl 68 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) ∈ ((𝑆 ∩ dom 𝐹)–cn→ℂ))
3430, 33eqeltrrd 2829 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ∈ ((𝑆 ∩ dom 𝐹)–cn→ℂ))
35 dmres 5972 . . . . 5 dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)
3635oveq1i 7379 . . . 4 (dom (𝐹𝑆)–cn→ℂ) = ((𝑆 ∩ dom 𝐹)–cn→ℂ)
3734, 36eleqtrrdi 2839 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ∈ (dom (𝐹𝑆)–cn→ℂ))
3822, 37eqeltrd 2828 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) ∈ (dom (𝐹𝑆)–cn→ℂ))
39 recnprss 25838 . . 3 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
40 elcpn 25869 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐹𝑆) ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ ((𝐹𝑆) ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) ∈ (dom (𝐹𝑆)–cn→ℂ))))
4139, 9, 40syl2an2r 685 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → ((𝐹𝑆) ∈ ((𝓑C𝑛𝑆)‘𝑁) ↔ ((𝐹𝑆) ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) ∈ (dom (𝐹𝑆)–cn→ℂ))))
4215, 38, 41mpbir2and 713 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘𝑁)) → (𝐹𝑆) ∈ ((𝓑C𝑛𝑆)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3910  wss 3911  {cpr 4587  dom cdm 5631  cres 5633   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  pm cpm 8777  cc 11042  cr 11043  0cn0 12418  cnccncf 24802   D𝑛 cdvn 25798  𝓑C𝑛ccpn 25799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cnp 23148  df-haus 23235  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-cncf 24804  df-limc 25800  df-dv 25801  df-dvn 25802  df-cpn 25803
This theorem is referenced by:  aalioulem3  26275
  Copyright terms: Public domain W3C validator