| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptres3 | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptres3.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| dvmptres3.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptres3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| dvmptres3.y | ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) |
| dvmptres3.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptres3.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptres3.d | ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| Ref | Expression |
|---|---|
| dvmptres3 | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptres3.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvmptres3.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 3 | 2 | fmpttd 7049 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 4 | dvmptres3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 5 | dvmptres3.d | . . . . 5 ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 6 | 5 | dmeqd 5848 | . . . 4 ⊢ (𝜑 → dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 7 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | |
| 8 | dvmptres3.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 9 | 7, 8 | dmmptd 6627 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
| 10 | 6, 9 | eqtrd 2764 | . . 3 ⊢ (𝜑 → dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
| 11 | dvmptres3.j | . . . 4 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 12 | 11 | dvres3a 25813 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ∈ 𝐽 ∧ dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
| 13 | 1, 3, 4, 10, 12 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
| 14 | rescom 5953 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) ↾ 𝑋) | |
| 15 | resres 5943 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) | |
| 16 | 14, 15 | eqtri 2752 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) |
| 17 | dvmptres3.y | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) | |
| 18 | 17 | reseq2d 5930 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) |
| 19 | 16, 18 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) |
| 20 | ffn 6652 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ → (𝑥 ∈ 𝑋 ↦ 𝐴) Fn 𝑋) | |
| 21 | fnresdm 6601 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) Fn 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
| 22 | 3, 20, 21 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
| 23 | 22 | reseq1d 5929 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) |
| 24 | inss2 4189 | . . . . . 6 ⊢ (𝑆 ∩ 𝑋) ⊆ 𝑋 | |
| 25 | 17, 24 | eqsstrrdi 3981 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 26 | 25 | resmptd 5991 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
| 27 | 19, 23, 26 | 3eqtr3d 2772 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
| 28 | 27 | oveq2d 7365 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
| 29 | rescom 5953 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑆) ↾ 𝑋) | |
| 30 | resres 5943 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑆) ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) | |
| 31 | 29, 30 | eqtri 2752 | . . . 4 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) |
| 32 | 17 | reseq2d 5930 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
| 33 | 31, 32 | eqtrid 2776 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
| 34 | 8 | ralrimiva 3121 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
| 35 | 7 | fnmpt 6622 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝑋 ↦ 𝐵) Fn 𝑋) |
| 36 | fnresdm 6601 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) Fn 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 37 | 34, 35, 36 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 38 | 37, 5 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
| 39 | 38 | reseq1d 5929 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
| 40 | 25 | resmptd 5991 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| 41 | 33, 39, 40 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| 42 | 13, 28, 41 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3902 {cpr 4579 ↦ cmpt 5173 dom cdm 5619 ↾ cres 5621 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 TopOpenctopn 17325 ℂfldccnfld 21261 D cdv 25762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-icc 13255 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cnp 23113 df-haus 23200 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-limc 25765 df-dv 25766 |
| This theorem is referenced by: dvmptid 25859 dvmptc 25860 taylthlem1 26279 taylthlem2 26280 taylthlem2OLD 26281 pige3ALT 26427 dvcxp1 26647 dvreasin 37686 dvreacos 37687 areacirclem1 37688 readvrec2 42334 readvcot 42337 |
| Copyright terms: Public domain | W3C validator |