MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptres3 Structured version   Visualization version   GIF version

Theorem dvmptres3 26008
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptres3.j 𝐽 = (TopOpen‘ℂfld)
dvmptres3.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptres3.x (𝜑𝑋𝐽)
dvmptres3.y (𝜑 → (𝑆𝑋) = 𝑌)
dvmptres3.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptres3.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptres3.d (𝜑 → (ℂ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptres3 (𝜑 → (𝑆 D (𝑥𝑌𝐴)) = (𝑥𝑌𝐵))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem dvmptres3
StepHypRef Expression
1 dvmptres3.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptres3.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
32fmpttd 7134 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
4 dvmptres3.x . . 3 (𝜑𝑋𝐽)
5 dvmptres3.d . . . . 5 (𝜑 → (ℂ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
65dmeqd 5918 . . . 4 (𝜑 → dom (ℂ D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
7 eqid 2734 . . . . 5 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
8 dvmptres3.b . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑉)
97, 8dmmptd 6713 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
106, 9eqtrd 2774 . . 3 (𝜑 → dom (ℂ D (𝑥𝑋𝐴)) = 𝑋)
11 dvmptres3.j . . . 4 𝐽 = (TopOpen‘ℂfld)
1211dvres3a 25963 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥𝑋𝐴):𝑋⟶ℂ) ∧ (𝑋𝐽 ∧ dom (ℂ D (𝑥𝑋𝐴)) = 𝑋)) → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
131, 3, 4, 10, 12syl22anc 839 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
14 rescom 6022 . . . . . 6 (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = (((𝑥𝑋𝐴) ↾ 𝑆) ↾ 𝑋)
15 resres 6012 . . . . . 6 (((𝑥𝑋𝐴) ↾ 𝑆) ↾ 𝑋) = ((𝑥𝑋𝐴) ↾ (𝑆𝑋))
1614, 15eqtri 2762 . . . . 5 (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ (𝑆𝑋))
17 dvmptres3.y . . . . . 6 (𝜑 → (𝑆𝑋) = 𝑌)
1817reseq2d 5999 . . . . 5 (𝜑 → ((𝑥𝑋𝐴) ↾ (𝑆𝑋)) = ((𝑥𝑋𝐴) ↾ 𝑌))
1916, 18eqtrid 2786 . . . 4 (𝜑 → (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ 𝑌))
20 ffn 6736 . . . . . 6 ((𝑥𝑋𝐴):𝑋⟶ℂ → (𝑥𝑋𝐴) Fn 𝑋)
21 fnresdm 6687 . . . . . 6 ((𝑥𝑋𝐴) Fn 𝑋 → ((𝑥𝑋𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
223, 20, 213syl 18 . . . . 5 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
2322reseq1d 5998 . . . 4 (𝜑 → (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ 𝑆))
24 inss2 4245 . . . . . 6 (𝑆𝑋) ⊆ 𝑋
2517, 24eqsstrrdi 4050 . . . . 5 (𝜑𝑌𝑋)
2625resmptd 6059 . . . 4 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) = (𝑥𝑌𝐴))
2719, 23, 263eqtr3d 2782 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑆) = (𝑥𝑌𝐴))
2827oveq2d 7446 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = (𝑆 D (𝑥𝑌𝐴)))
29 rescom 6022 . . . . 5 (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = (((𝑥𝑋𝐵) ↾ 𝑆) ↾ 𝑋)
30 resres 6012 . . . . 5 (((𝑥𝑋𝐵) ↾ 𝑆) ↾ 𝑋) = ((𝑥𝑋𝐵) ↾ (𝑆𝑋))
3129, 30eqtri 2762 . . . 4 (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐵) ↾ (𝑆𝑋))
3217reseq2d 5999 . . . 4 (𝜑 → ((𝑥𝑋𝐵) ↾ (𝑆𝑋)) = ((𝑥𝑋𝐵) ↾ 𝑌))
3331, 32eqtrid 2786 . . 3 (𝜑 → (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐵) ↾ 𝑌))
348ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
357fnmpt 6708 . . . . . 6 (∀𝑥𝑋 𝐵𝑉 → (𝑥𝑋𝐵) Fn 𝑋)
36 fnresdm 6687 . . . . . 6 ((𝑥𝑋𝐵) Fn 𝑋 → ((𝑥𝑋𝐵) ↾ 𝑋) = (𝑥𝑋𝐵))
3734, 35, 363syl 18 . . . . 5 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑋) = (𝑥𝑋𝐵))
3837, 5eqtr4d 2777 . . . 4 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑋) = (ℂ D (𝑥𝑋𝐴)))
3938reseq1d 5998 . . 3 (𝜑 → (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
4025resmptd 6059 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑌) = (𝑥𝑌𝐵))
4133, 39, 403eqtr3d 2782 . 2 (𝜑 → ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆) = (𝑥𝑌𝐵))
4213, 28, 413eqtr3d 2782 1 (𝜑 → (𝑆 D (𝑥𝑌𝐴)) = (𝑥𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  cin 3961  {cpr 4632  cmpt 5230  dom cdm 5688  cres 5690   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  TopOpenctopn 17467  fldccnfld 21381   D cdv 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-icc 13390  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cnp 23251  df-haus 23338  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-limc 25915  df-dv 25916
This theorem is referenced by:  dvmptid  26009  dvmptc  26010  taylthlem1  26429  taylthlem2  26430  taylthlem2OLD  26431  pige3ALT  26576  dvcxp1  26796  dvreasin  37692  dvreacos  37693  areacirclem1  37694  readvrec2  42369
  Copyright terms: Public domain W3C validator