| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptres3 | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptres3.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| dvmptres3.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptres3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| dvmptres3.y | ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) |
| dvmptres3.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptres3.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptres3.d | ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| Ref | Expression |
|---|---|
| dvmptres3 | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptres3.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvmptres3.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 3 | 2 | fmpttd 7105 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 4 | dvmptres3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 5 | dvmptres3.d | . . . . 5 ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 6 | 5 | dmeqd 5885 | . . . 4 ⊢ (𝜑 → dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 7 | eqid 2735 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | |
| 8 | dvmptres3.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 9 | 7, 8 | dmmptd 6683 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
| 10 | 6, 9 | eqtrd 2770 | . . 3 ⊢ (𝜑 → dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
| 11 | dvmptres3.j | . . . 4 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 12 | 11 | dvres3a 25867 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ∈ 𝐽 ∧ dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
| 13 | 1, 3, 4, 10, 12 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
| 14 | rescom 5989 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) ↾ 𝑋) | |
| 15 | resres 5979 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) | |
| 16 | 14, 15 | eqtri 2758 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) |
| 17 | dvmptres3.y | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) | |
| 18 | 17 | reseq2d 5966 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) |
| 19 | 16, 18 | eqtrid 2782 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) |
| 20 | ffn 6706 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ → (𝑥 ∈ 𝑋 ↦ 𝐴) Fn 𝑋) | |
| 21 | fnresdm 6657 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) Fn 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
| 22 | 3, 20, 21 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
| 23 | 22 | reseq1d 5965 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) |
| 24 | inss2 4213 | . . . . . 6 ⊢ (𝑆 ∩ 𝑋) ⊆ 𝑋 | |
| 25 | 17, 24 | eqsstrrdi 4004 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 26 | 25 | resmptd 6027 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
| 27 | 19, 23, 26 | 3eqtr3d 2778 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
| 28 | 27 | oveq2d 7421 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
| 29 | rescom 5989 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑆) ↾ 𝑋) | |
| 30 | resres 5979 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑆) ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) | |
| 31 | 29, 30 | eqtri 2758 | . . . 4 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) |
| 32 | 17 | reseq2d 5966 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
| 33 | 31, 32 | eqtrid 2782 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
| 34 | 8 | ralrimiva 3132 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
| 35 | 7 | fnmpt 6678 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝑋 ↦ 𝐵) Fn 𝑋) |
| 36 | fnresdm 6657 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) Fn 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 37 | 34, 35, 36 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 38 | 37, 5 | eqtr4d 2773 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
| 39 | 38 | reseq1d 5965 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
| 40 | 25 | resmptd 6027 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| 41 | 33, 39, 40 | 3eqtr3d 2778 | . 2 ⊢ (𝜑 → ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| 42 | 13, 28, 41 | 3eqtr3d 2778 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 {cpr 4603 ↦ cmpt 5201 dom cdm 5654 ↾ cres 5656 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 TopOpenctopn 17435 ℂfldccnfld 21315 D cdv 25816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-rest 17436 df-topn 17437 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cnp 23166 df-haus 23253 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-limc 25819 df-dv 25820 |
| This theorem is referenced by: dvmptid 25913 dvmptc 25914 taylthlem1 26333 taylthlem2 26334 taylthlem2OLD 26335 pige3ALT 26481 dvcxp1 26701 dvreasin 37730 dvreacos 37731 areacirclem1 37732 readvrec2 42404 readvcot 42407 |
| Copyright terms: Public domain | W3C validator |