MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptres3 Structured version   Visualization version   GIF version

Theorem dvmptres3 25994
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptres3.j 𝐽 = (TopOpen‘ℂfld)
dvmptres3.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptres3.x (𝜑𝑋𝐽)
dvmptres3.y (𝜑 → (𝑆𝑋) = 𝑌)
dvmptres3.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptres3.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptres3.d (𝜑 → (ℂ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptres3 (𝜑 → (𝑆 D (𝑥𝑌𝐴)) = (𝑥𝑌𝐵))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem dvmptres3
StepHypRef Expression
1 dvmptres3.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptres3.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
32fmpttd 7135 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
4 dvmptres3.x . . 3 (𝜑𝑋𝐽)
5 dvmptres3.d . . . . 5 (𝜑 → (ℂ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
65dmeqd 5916 . . . 4 (𝜑 → dom (ℂ D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
7 eqid 2737 . . . . 5 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
8 dvmptres3.b . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑉)
97, 8dmmptd 6713 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
106, 9eqtrd 2777 . . 3 (𝜑 → dom (ℂ D (𝑥𝑋𝐴)) = 𝑋)
11 dvmptres3.j . . . 4 𝐽 = (TopOpen‘ℂfld)
1211dvres3a 25949 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥𝑋𝐴):𝑋⟶ℂ) ∧ (𝑋𝐽 ∧ dom (ℂ D (𝑥𝑋𝐴)) = 𝑋)) → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
131, 3, 4, 10, 12syl22anc 839 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
14 rescom 6020 . . . . . 6 (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = (((𝑥𝑋𝐴) ↾ 𝑆) ↾ 𝑋)
15 resres 6010 . . . . . 6 (((𝑥𝑋𝐴) ↾ 𝑆) ↾ 𝑋) = ((𝑥𝑋𝐴) ↾ (𝑆𝑋))
1614, 15eqtri 2765 . . . . 5 (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ (𝑆𝑋))
17 dvmptres3.y . . . . . 6 (𝜑 → (𝑆𝑋) = 𝑌)
1817reseq2d 5997 . . . . 5 (𝜑 → ((𝑥𝑋𝐴) ↾ (𝑆𝑋)) = ((𝑥𝑋𝐴) ↾ 𝑌))
1916, 18eqtrid 2789 . . . 4 (𝜑 → (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ 𝑌))
20 ffn 6736 . . . . . 6 ((𝑥𝑋𝐴):𝑋⟶ℂ → (𝑥𝑋𝐴) Fn 𝑋)
21 fnresdm 6687 . . . . . 6 ((𝑥𝑋𝐴) Fn 𝑋 → ((𝑥𝑋𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
223, 20, 213syl 18 . . . . 5 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
2322reseq1d 5996 . . . 4 (𝜑 → (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ 𝑆))
24 inss2 4238 . . . . . 6 (𝑆𝑋) ⊆ 𝑋
2517, 24eqsstrrdi 4029 . . . . 5 (𝜑𝑌𝑋)
2625resmptd 6058 . . . 4 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) = (𝑥𝑌𝐴))
2719, 23, 263eqtr3d 2785 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑆) = (𝑥𝑌𝐴))
2827oveq2d 7447 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = (𝑆 D (𝑥𝑌𝐴)))
29 rescom 6020 . . . . 5 (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = (((𝑥𝑋𝐵) ↾ 𝑆) ↾ 𝑋)
30 resres 6010 . . . . 5 (((𝑥𝑋𝐵) ↾ 𝑆) ↾ 𝑋) = ((𝑥𝑋𝐵) ↾ (𝑆𝑋))
3129, 30eqtri 2765 . . . 4 (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐵) ↾ (𝑆𝑋))
3217reseq2d 5997 . . . 4 (𝜑 → ((𝑥𝑋𝐵) ↾ (𝑆𝑋)) = ((𝑥𝑋𝐵) ↾ 𝑌))
3331, 32eqtrid 2789 . . 3 (𝜑 → (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐵) ↾ 𝑌))
348ralrimiva 3146 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
357fnmpt 6708 . . . . . 6 (∀𝑥𝑋 𝐵𝑉 → (𝑥𝑋𝐵) Fn 𝑋)
36 fnresdm 6687 . . . . . 6 ((𝑥𝑋𝐵) Fn 𝑋 → ((𝑥𝑋𝐵) ↾ 𝑋) = (𝑥𝑋𝐵))
3734, 35, 363syl 18 . . . . 5 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑋) = (𝑥𝑋𝐵))
3837, 5eqtr4d 2780 . . . 4 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑋) = (ℂ D (𝑥𝑋𝐴)))
3938reseq1d 5996 . . 3 (𝜑 → (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
4025resmptd 6058 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑌) = (𝑥𝑌𝐵))
4133, 39, 403eqtr3d 2785 . 2 (𝜑 → ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆) = (𝑥𝑌𝐵))
4213, 28, 413eqtr3d 2785 1 (𝜑 → (𝑆 D (𝑥𝑌𝐴)) = (𝑥𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  cin 3950  {cpr 4628  cmpt 5225  dom cdm 5685  cres 5687   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  TopOpenctopn 17466  fldccnfld 21364   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cnp 23236  df-haus 23323  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-limc 25901  df-dv 25902
This theorem is referenced by:  dvmptid  25995  dvmptc  25996  taylthlem1  26415  taylthlem2  26416  taylthlem2OLD  26417  pige3ALT  26562  dvcxp1  26782  dvreasin  37713  dvreacos  37714  areacirclem1  37715  readvrec2  42391  readvcot  42394
  Copyright terms: Public domain W3C validator