| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptres3 | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptres3.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| dvmptres3.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptres3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| dvmptres3.y | ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) |
| dvmptres3.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptres3.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptres3.d | ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| Ref | Expression |
|---|---|
| dvmptres3 | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptres3.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvmptres3.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 3 | 2 | fmpttd 7048 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 4 | dvmptres3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 5 | dvmptres3.d | . . . . 5 ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 6 | 5 | dmeqd 5844 | . . . 4 ⊢ (𝜑 → dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 7 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | |
| 8 | dvmptres3.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 9 | 7, 8 | dmmptd 6626 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
| 10 | 6, 9 | eqtrd 2766 | . . 3 ⊢ (𝜑 → dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
| 11 | dvmptres3.j | . . . 4 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 12 | 11 | dvres3a 25842 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ∈ 𝐽 ∧ dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
| 13 | 1, 3, 4, 10, 12 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
| 14 | rescom 5950 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) ↾ 𝑋) | |
| 15 | resres 5940 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) | |
| 16 | 14, 15 | eqtri 2754 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) |
| 17 | dvmptres3.y | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) | |
| 18 | 17 | reseq2d 5927 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) |
| 19 | 16, 18 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) |
| 20 | ffn 6651 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ → (𝑥 ∈ 𝑋 ↦ 𝐴) Fn 𝑋) | |
| 21 | fnresdm 6600 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) Fn 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
| 22 | 3, 20, 21 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
| 23 | 22 | reseq1d 5926 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) |
| 24 | inss2 4185 | . . . . . 6 ⊢ (𝑆 ∩ 𝑋) ⊆ 𝑋 | |
| 25 | 17, 24 | eqsstrrdi 3975 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 26 | 25 | resmptd 5988 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
| 27 | 19, 23, 26 | 3eqtr3d 2774 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
| 28 | 27 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
| 29 | rescom 5950 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑆) ↾ 𝑋) | |
| 30 | resres 5940 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑆) ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) | |
| 31 | 29, 30 | eqtri 2754 | . . . 4 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) |
| 32 | 17 | reseq2d 5927 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
| 33 | 31, 32 | eqtrid 2778 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
| 34 | 8 | ralrimiva 3124 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
| 35 | 7 | fnmpt 6621 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝑋 ↦ 𝐵) Fn 𝑋) |
| 36 | fnresdm 6600 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) Fn 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 37 | 34, 35, 36 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 38 | 37, 5 | eqtr4d 2769 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
| 39 | 38 | reseq1d 5926 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
| 40 | 25 | resmptd 5988 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| 41 | 33, 39, 40 | 3eqtr3d 2774 | . 2 ⊢ (𝜑 → ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| 42 | 13, 28, 41 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3896 {cpr 4575 ↦ cmpt 5170 dom cdm 5614 ↾ cres 5616 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 TopOpenctopn 17325 ℂfldccnfld 21291 D cdv 25791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cnp 23143 df-haus 23230 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-limc 25794 df-dv 25795 |
| This theorem is referenced by: dvmptid 25888 dvmptc 25889 taylthlem1 26308 taylthlem2 26309 taylthlem2OLD 26310 pige3ALT 26456 dvcxp1 26676 dvreasin 37754 dvreacos 37755 areacirclem1 37756 readvrec2 42402 readvcot 42405 |
| Copyright terms: Public domain | W3C validator |