Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvmptres3 | Structured version Visualization version GIF version |
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptres3.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
dvmptres3.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptres3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
dvmptres3.y | ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) |
dvmptres3.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptres3.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptres3.d | ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
Ref | Expression |
---|---|
dvmptres3 | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptres3.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvmptres3.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
3 | 2 | fmpttd 6971 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
4 | dvmptres3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
5 | dvmptres3.d | . . . . 5 ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
6 | 5 | dmeqd 5803 | . . . 4 ⊢ (𝜑 → dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
7 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | |
8 | dvmptres3.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
9 | 7, 8 | dmmptd 6562 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
10 | 6, 9 | eqtrd 2778 | . . 3 ⊢ (𝜑 → dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
11 | dvmptres3.j | . . . 4 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
12 | 11 | dvres3a 24983 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ∈ 𝐽 ∧ dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
13 | 1, 3, 4, 10, 12 | syl22anc 835 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
14 | rescom 5906 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) ↾ 𝑋) | |
15 | resres 5893 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) | |
16 | 14, 15 | eqtri 2766 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) |
17 | dvmptres3.y | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) | |
18 | 17 | reseq2d 5880 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) |
19 | 16, 18 | syl5eq 2791 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) |
20 | ffn 6584 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ → (𝑥 ∈ 𝑋 ↦ 𝐴) Fn 𝑋) | |
21 | fnresdm 6535 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) Fn 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
22 | 3, 20, 21 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
23 | 22 | reseq1d 5879 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) |
24 | inss2 4160 | . . . . . 6 ⊢ (𝑆 ∩ 𝑋) ⊆ 𝑋 | |
25 | 17, 24 | eqsstrrdi 3972 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
26 | 25 | resmptd 5937 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
27 | 19, 23, 26 | 3eqtr3d 2786 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
28 | 27 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
29 | rescom 5906 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑆) ↾ 𝑋) | |
30 | resres 5893 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑆) ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) | |
31 | 29, 30 | eqtri 2766 | . . . 4 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) |
32 | 17 | reseq2d 5880 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
33 | 31, 32 | syl5eq 2791 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
34 | 8 | ralrimiva 3107 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
35 | 7 | fnmpt 6557 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝑋 ↦ 𝐵) Fn 𝑋) |
36 | fnresdm 6535 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) Fn 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
37 | 34, 35, 36 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
38 | 37, 5 | eqtr4d 2781 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
39 | 38 | reseq1d 5879 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
40 | 25 | resmptd 5937 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
41 | 33, 39, 40 | 3eqtr3d 2786 | . 2 ⊢ (𝜑 → ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
42 | 13, 28, 41 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 {cpr 4560 ↦ cmpt 5153 dom cdm 5580 ↾ cres 5582 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 TopOpenctopn 17049 ℂfldccnfld 20510 D cdv 24932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-topn 17051 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cnp 22287 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-limc 24935 df-dv 24936 |
This theorem is referenced by: dvmptid 25026 dvmptc 25027 taylthlem1 25437 taylthlem2 25438 pige3ALT 25581 dvcxp1 25798 dvreasin 35790 dvreacos 35791 areacirclem1 35792 |
Copyright terms: Public domain | W3C validator |