Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvmptres3 | Structured version Visualization version GIF version |
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptres3.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
dvmptres3.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptres3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
dvmptres3.y | ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) |
dvmptres3.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptres3.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptres3.d | ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
Ref | Expression |
---|---|
dvmptres3 | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptres3.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvmptres3.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
3 | 2 | fmpttd 6986 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
4 | dvmptres3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
5 | dvmptres3.d | . . . . 5 ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
6 | 5 | dmeqd 5813 | . . . 4 ⊢ (𝜑 → dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
7 | eqid 2740 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | |
8 | dvmptres3.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
9 | 7, 8 | dmmptd 6576 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
10 | 6, 9 | eqtrd 2780 | . . 3 ⊢ (𝜑 → dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
11 | dvmptres3.j | . . . 4 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
12 | 11 | dvres3a 25089 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) ∧ (𝑋 ∈ 𝐽 ∧ dom (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋)) → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
13 | 1, 3, 4, 10, 12 | syl22anc 836 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
14 | rescom 5916 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) ↾ 𝑋) | |
15 | resres 5903 | . . . . . 6 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) | |
16 | 14, 15 | eqtri 2768 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) |
17 | dvmptres3.y | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) | |
18 | 17 | reseq2d 5890 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ (𝑆 ∩ 𝑋)) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) |
19 | 16, 18 | eqtrid 2792 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌)) |
20 | ffn 6598 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ → (𝑥 ∈ 𝑋 ↦ 𝐴) Fn 𝑋) | |
21 | fnresdm 6549 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) Fn 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
22 | 3, 20, 21 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
23 | 22 | reseq1d 5889 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) |
24 | inss2 4169 | . . . . . 6 ⊢ (𝑆 ∩ 𝑋) ⊆ 𝑋 | |
25 | 17, 24 | eqsstrrdi 3981 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
26 | 25 | resmptd 5947 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
27 | 19, 23, 26 | 3eqtr3d 2788 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆) = (𝑥 ∈ 𝑌 ↦ 𝐴)) |
28 | 27 | oveq2d 7288 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ↾ 𝑆)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) |
29 | rescom 5916 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑆) ↾ 𝑋) | |
30 | resres 5903 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑆) ↾ 𝑋) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) | |
31 | 29, 30 | eqtri 2768 | . . . 4 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) |
32 | 17 | reseq2d 5890 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ (𝑆 ∩ 𝑋)) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
33 | 31, 32 | eqtrid 2792 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌)) |
34 | 8 | ralrimiva 3110 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
35 | 7 | fnmpt 6571 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝑋 ↦ 𝐵) Fn 𝑋) |
36 | fnresdm 6549 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) Fn 𝑋 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
37 | 34, 35, 36 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
38 | 37, 5 | eqtr4d 2783 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) = (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
39 | 38 | reseq1d 5889 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑋) ↾ 𝑆) = ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆)) |
40 | 25 | resmptd 5947 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ↾ 𝑌) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
41 | 33, 39, 40 | 3eqtr3d 2788 | . 2 ⊢ (𝜑 → ((ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ↾ 𝑆) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
42 | 13, 28, 41 | 3eqtr3d 2788 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∩ cin 3891 {cpr 4569 ↦ cmpt 5162 dom cdm 5590 ↾ cres 5592 Fn wfn 6427 ⟶wf 6428 ‘cfv 6432 (class class class)co 7272 ℂcc 10880 ℝcr 10881 TopOpenctopn 17143 ℂfldccnfld 20608 D cdv 25038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-pre-sup 10960 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-er 8490 df-map 8609 df-pm 8610 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-fi 9158 df-sup 9189 df-inf 9190 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-div 11644 df-nn 11985 df-2 12047 df-3 12048 df-4 12049 df-5 12050 df-6 12051 df-7 12052 df-8 12053 df-9 12054 df-n0 12245 df-z 12331 df-dec 12449 df-uz 12594 df-q 12700 df-rp 12742 df-xneg 12859 df-xadd 12860 df-xmul 12861 df-icc 13097 df-fz 13251 df-seq 13733 df-exp 13794 df-cj 14821 df-re 14822 df-im 14823 df-sqrt 14957 df-abs 14958 df-struct 16859 df-slot 16894 df-ndx 16906 df-base 16924 df-plusg 16986 df-mulr 16987 df-starv 16988 df-tset 16992 df-ple 16993 df-ds 16995 df-unif 16996 df-rest 17144 df-topn 17145 df-topgen 17165 df-psmet 20600 df-xmet 20601 df-met 20602 df-bl 20603 df-mopn 20604 df-fbas 20605 df-fg 20606 df-cnfld 20609 df-top 22054 df-topon 22071 df-topsp 22093 df-bases 22107 df-cld 22181 df-ntr 22182 df-cls 22183 df-nei 22260 df-lp 22298 df-perf 22299 df-cnp 22390 df-haus 22477 df-fil 23008 df-fm 23100 df-flim 23101 df-flf 23102 df-xms 23484 df-ms 23485 df-limc 25041 df-dv 25042 |
This theorem is referenced by: dvmptid 25132 dvmptc 25133 taylthlem1 25543 taylthlem2 25544 pige3ALT 25687 dvcxp1 25904 dvreasin 35872 dvreacos 35873 areacirclem1 35874 |
Copyright terms: Public domain | W3C validator |