Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem4 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem4 42134
Description: Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf Add hypothesis on coprimality, lift function to the integers so that group operations may be applied. Inline definition. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6lem4.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6lem4.2 𝑃 = (chr‘𝐾)
aks6d1c6lem4.3 (𝜑𝐾 ∈ Field)
aks6d1c6lem4.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6lem4.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6lem4.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6lem4.7 (𝜑𝑃𝑁)
aks6d1c6lem4.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6lem4.9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c6lem4.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6lem4.11 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aksaks6dlem4.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6lem4.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6lem4.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6lem4.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6lem4.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6lem4.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6lem4.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6lem4.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem4.20 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
aks6d1c6lem4.21 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
aks6d1c6lem4.22 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
Assertion
Ref Expression
aks6d1c6lem4 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Distinct variable groups:   ,𝑎   𝑃,𝑘,𝑙,𝑠   𝜑,   𝑁,𝑠   𝜑,𝑘,𝑙   ,𝐾   𝑦,𝑘,𝑙,𝜑   𝑔,𝐾,𝑥   𝑒,𝐾,𝑓   𝑚,𝐾,𝑛   𝑘,𝑁,𝑙,𝑥   𝑥,𝑅   𝑃,𝑗   𝑒,𝑁,𝑓   𝑆,𝑠,𝑡   𝑃,𝑒,𝑓   𝑗,𝑁   𝑅,𝑒,𝑓,𝑦   𝑗,𝐾   𝑦,𝑀   𝑁,𝑎   ,𝑀,𝑗   𝑥,𝑃   𝑆,,𝑗   𝜑,𝑗   𝑈,𝑗   𝑆,𝑎   𝑆,𝑔,𝑖,𝑥,𝑦   𝜑,𝑔,𝑖,𝑥   𝜑,𝑠,𝑡   𝜑,𝑎   𝑃,𝑏   𝑁,𝑏   𝐾,𝑎   𝑖,𝐾,𝑡,𝑦,𝑥   𝐷,𝑠   ,𝐺   𝑡,𝐺   𝑔,𝐺,𝑖,𝑦   𝐻,𝑠,𝑡   ,𝐻,𝑗   𝑥,𝐸   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸   𝑔,𝐻,𝑖,𝑥,𝑦   𝐴,𝑎   𝑒,𝐺,𝑓   𝐴,𝑏   𝐻,𝑎   𝐴,𝑔,𝑖,𝑥   𝐴,,𝑗   𝐴,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑚,𝑛,𝑏)   𝐴(𝑦,𝑒,𝑓,𝑘,𝑚,𝑛,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑎,𝑏,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑆(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝑈(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐸(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝐽(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐾(𝑘,𝑠,𝑏,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛)

Proof of Theorem aks6d1c6lem4
Dummy variables 𝑣 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6lem4.1 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
2 aks6d1c6lem4.2 . 2 𝑃 = (chr‘𝐾)
3 aks6d1c6lem4.3 . 2 (𝜑𝐾 ∈ Field)
4 aks6d1c6lem4.4 . 2 (𝜑𝑃 ∈ ℙ)
5 aks6d1c6lem4.5 . 2 (𝜑𝑅 ∈ ℕ)
6 aks6d1c6lem4.6 . 2 (𝜑𝑁 ∈ ℕ)
7 aks6d1c6lem4.7 . 2 (𝜑𝑃𝑁)
8 aks6d1c6lem4.8 . 2 (𝜑 → (𝑁 gcd 𝑅) = 1)
9 simpr 484 . . 3 ((𝜑𝐴 < 𝑃) → 𝐴 < 𝑃)
10 prmnn 16620 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
114, 10syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
1211nnred 12177 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
13 aks6d1c6lem4.11 . . . . . . . . 9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
145phicld 16718 . . . . . . . . . . . . . . 15 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
1514nnred 12177 . . . . . . . . . . . . . 14 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
1614nnnn0d 12479 . . . . . . . . . . . . . . 15 (𝜑 → (ϕ‘𝑅) ∈ ℕ0)
1716nn0ge0d 12482 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (ϕ‘𝑅))
1815, 17resqrtcld 15360 . . . . . . . . . . . . 13 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
19 2re 12236 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
21 2pos 12265 . . . . . . . . . . . . . . 15 0 < 2
2221a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
236nnred 12177 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
246nngt0d 12211 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
25 1red 11151 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
26 1lt2 12328 . . . . . . . . . . . . . . . . 17 1 < 2
2726a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
2825, 27ltned 11286 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
2928necomd 2980 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
3020, 22, 23, 24, 29relogbcld 41934 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
3118, 30remulcld 11180 . . . . . . . . . . . 12 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
3231flcld 13736 . . . . . . . . . . 11 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
3315, 17sqrtge0d 15363 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
3420recnd 11178 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℂ)
3522gt0ne0d 11718 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 0)
36 logb1 26655 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
3734, 35, 29, 36syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 1) = 0)
3837eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → 0 = (2 logb 1))
39 2z 12541 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
4039a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℤ)
4120leidd 11720 . . . . . . . . . . . . . . 15 (𝜑 → 2 ≤ 2)
42 0lt1 11676 . . . . . . . . . . . . . . . 16 0 < 1
4342a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 1)
446nnge1d 12210 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑁)
4540, 41, 25, 43, 23, 24, 44logblebd 41937 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 1) ≤ (2 logb 𝑁))
4638, 45eqbrtrd 5124 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (2 logb 𝑁))
4718, 30, 33, 46mulge0d 11731 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
48 0zd 12517 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
49 flge 13743 . . . . . . . . . . . . 13 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5031, 48, 49syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5147, 50mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
5232, 51jca 511 . . . . . . . . . 10 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
53 elnn0z 12518 . . . . . . . . . 10 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5452, 53sylibr 234 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
5513, 54eqeltrid 2832 . . . . . . . 8 (𝜑𝐴 ∈ ℕ0)
5655nn0red 12480 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5712, 56lenltd 11296 . . . . . 6 (𝜑 → (𝑃𝐴 ↔ ¬ 𝐴 < 𝑃))
5857biimpar 477 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → 𝑃𝐴)
59 oveq1 7376 . . . . . . . . 9 (𝑏 = 𝑃 → (𝑏 gcd 𝑁) = (𝑃 gcd 𝑁))
6059eqeq1d 2731 . . . . . . . 8 (𝑏 = 𝑃 → ((𝑏 gcd 𝑁) = 1 ↔ (𝑃 gcd 𝑁) = 1))
61 aks6d1c6lem4.9 . . . . . . . . 9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
6261adantr 480 . . . . . . . 8 ((𝜑𝑃𝐴) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
63 1zzd 12540 . . . . . . . . 9 ((𝜑𝑃𝐴) → 1 ∈ ℤ)
6413, 32eqeltrid 2832 . . . . . . . . . 10 (𝜑𝐴 ∈ ℤ)
6564adantr 480 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝐴 ∈ ℤ)
6611nnzd 12532 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6766adantr 480 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝑃 ∈ ℤ)
6811nnge1d 12210 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑃)
6968adantr 480 . . . . . . . . 9 ((𝜑𝑃𝐴) → 1 ≤ 𝑃)
70 simpr 484 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝑃𝐴)
7163, 65, 67, 69, 70elfzd 13452 . . . . . . . 8 ((𝜑𝑃𝐴) → 𝑃 ∈ (1...𝐴))
7260, 62, 71rspcdva 3586 . . . . . . 7 ((𝜑𝑃𝐴) → (𝑃 gcd 𝑁) = 1)
7372ex 412 . . . . . 6 (𝜑 → (𝑃𝐴 → (𝑃 gcd 𝑁) = 1))
7473adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃𝐴 → (𝑃 gcd 𝑁) = 1))
7558, 74mpd 15 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃 gcd 𝑁) = 1)
766nnzd 12532 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
77 coprm 16657 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
784, 76, 77syl2anc 584 . . . . . . . . . . 11 (𝜑 → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
7978con1bid 355 . . . . . . . . . 10 (𝜑 → (¬ (𝑃 gcd 𝑁) = 1 ↔ 𝑃𝑁))
8079bicomd 223 . . . . . . . . 9 (𝜑 → (𝑃𝑁 ↔ ¬ (𝑃 gcd 𝑁) = 1))
8180biimpd 229 . . . . . . . 8 (𝜑 → (𝑃𝑁 → ¬ (𝑃 gcd 𝑁) = 1))
827, 81mpd 15 . . . . . . 7 (𝜑 → ¬ (𝑃 gcd 𝑁) = 1)
8382neqned 2932 . . . . . 6 (𝜑 → (𝑃 gcd 𝑁) ≠ 1)
8483adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃 gcd 𝑁) ≠ 1)
8584neneqd 2930 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → ¬ (𝑃 gcd 𝑁) = 1)
8675, 85pm2.21dd 195 . . 3 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → 𝐴 < 𝑃)
879, 86pm2.61dan 812 . 2 (𝜑𝐴 < 𝑃)
88 aks6d1c6lem4.10 . 2 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
89 aksaks6dlem4.12 . 2 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
90 aks6d1c6lem4.13 . 2 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
91 aks6d1c6lem4.14 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
92 aks6d1c6lem4.15 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
93 aks6d1c6lem4.16 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
94 aks6d1c6lem4.17 . 2 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
95 aks6d1c6lem4.18 . 2 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
96 aks6d1c6lem4.19 . 2 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
97 eqid 2729 . 2 (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
98 aks6d1c6lem4.21 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
99 imaco 6212 . . . . . 6 ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))
10099eqcomi 2738 . . . . 5 (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝐽𝐸) “ (ℕ0 × ℕ0))
101 resima 5975 . . . . . . . 8 (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)) = ((𝐽𝐸) “ (ℕ0 × ℕ0))
102101eqcomi 2738 . . . . . . 7 ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0))
103102a1i 11 . . . . . 6 (𝜑 → ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)))
10466adantr 480 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℤ)
105 xp1st 7979 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) → (1st𝑣) ∈ ℕ0)
106105adantl 481 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (1st𝑣) ∈ ℕ0)
107104, 106zexpcld 14028 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st𝑣)) ∈ ℤ)
10811nnne0d 12212 . . . . . . . . . . . . . . 15 (𝜑𝑃 ≠ 0)
109 dvdsval2 16201 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
11066, 108, 76, 109syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
1117, 110mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
112111adantr 480 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℤ)
113 xp2nd 7980 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) → (2nd𝑣) ∈ ℕ0)
114113adantl 481 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (2nd𝑣) ∈ ℕ0)
115112, 114zexpcld 14028 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd𝑣)) ∈ ℤ)
116107, 115zmulcld 12620 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) ∈ ℤ)
117 vex 3448 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
118 vex 3448 . . . . . . . . . . . . . . . 16 𝑙 ∈ V
119117, 118op1std 7957 . . . . . . . . . . . . . . 15 (𝑣 = ⟨𝑘, 𝑙⟩ → (1st𝑣) = 𝑘)
120119oveq2d 7385 . . . . . . . . . . . . . 14 (𝑣 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑣)) = (𝑃𝑘))
121117, 118op2ndd 7958 . . . . . . . . . . . . . . 15 (𝑣 = ⟨𝑘, 𝑙⟩ → (2nd𝑣) = 𝑙)
122121oveq2d 7385 . . . . . . . . . . . . . 14 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑣)) = ((𝑁 / 𝑃)↑𝑙))
123120, 122oveq12d 7387 . . . . . . . . . . . . 13 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
124123mpompt 7483 . . . . . . . . . . . 12 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
12589, 124eqtr4i 2755 . . . . . . . . . . 11 𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
126125a1i 11 . . . . . . . . . 10 (𝜑𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))))
127 aks6d1c6lem4.20 . . . . . . . . . . 11 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
128127a1i 11 . . . . . . . . . 10 (𝜑𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
129 oveq1 7376 . . . . . . . . . 10 (𝑗 = ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
130116, 126, 128, 129fmptco 7083 . . . . . . . . 9 (𝜑 → (𝐽𝐸) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
131130reseq1d 5938 . . . . . . . 8 (𝜑 → ((𝐽𝐸) ↾ (ℕ0 × ℕ0)) = ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)))
132 ssidd 3967 . . . . . . . . . 10 (𝜑 → (ℕ0 × ℕ0) ⊆ (ℕ0 × ℕ0))
133132resmptd 6000 . . . . . . . . 9 (𝜑 → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
134126, 116fvmpt2d 6963 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝐸𝑣) = ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
135134oveq1d 7384 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
136135mpteq2dva 5195 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
137136eqcomd 2735 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
138 ovexd 7404 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
139 eqid 2729 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
140138, 139fmptd 7068 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)):(ℕ0 × ℕ0)⟶V)
141 ffn 6670 . . . . . . . . . . . 12 ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)):(ℕ0 × ℕ0)⟶V → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) Fn (ℕ0 × ℕ0))
142140, 141syl 17 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) Fn (ℕ0 × ℕ0))
143 ovexd 7404 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
144143, 97fmptd 7068 . . . . . . . . . . . 12 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)):(ℕ0 × ℕ0)⟶V)
145 ffn 6670 . . . . . . . . . . . 12 ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)):(ℕ0 × ℕ0)⟶V → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) Fn (ℕ0 × ℕ0))
146144, 145syl 17 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) Fn (ℕ0 × ℕ0))
147 eqidd 2730 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
148 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → 𝑣 = 𝑐)
149148fveq2d 6844 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → (𝐸𝑣) = (𝐸𝑐))
150149oveq1d 7384 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
151 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑐 ∈ (ℕ0 × ℕ0))
152 ovexd 7404 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
153147, 150, 151, 152fvmptd 6957 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))‘𝑐) = ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
154 eqid 2729 . . . . . . . . . . . . 13 ((mulGrp‘𝐾) ↾s 𝑈) = ((mulGrp‘𝐾) ↾s 𝑈)
155 aks6d1c6lem4.22 . . . . . . . . . . . . . . . 16 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
156155ssrab3 4041 . . . . . . . . . . . . . . 15 𝑈 ⊆ (Base‘(mulGrp‘𝐾))
157156a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘(mulGrp‘𝐾)))
158157adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑈 ⊆ (Base‘(mulGrp‘𝐾)))
1593fldcrngd 20627 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ CRing)
160 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (mulGrp‘𝐾) = (mulGrp‘𝐾)
161160crngmgp 20126 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
162159, 161syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
163162, 5, 155primrootsunit 42059 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel))
164163simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
16593, 164eleqtrd 2830 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
166163simprd 495 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)
167 ablcmn 19693 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
168166, 167syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
1695nnnn0d 12479 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ∈ ℕ0)
170 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (.g‘((mulGrp‘𝐾) ↾s 𝑈)) = (.g‘((mulGrp‘𝐾) ↾s 𝑈))
171168, 169, 170isprimroot 42054 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤))))
172171biimpd 229 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤))))
173165, 172mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤)))
174173simp1d 1142 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
175 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
176154, 175ressbas2 17184 . . . . . . . . . . . . . . . 16 (𝑈 ⊆ (Base‘(mulGrp‘𝐾)) → 𝑈 = (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
177157, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
178174, 177eleqtrrd 2831 . . . . . . . . . . . . . 14 (𝜑𝑀𝑈)
179178adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑀𝑈)
1806, 4, 7, 89aks6d1c2p1 42079 . . . . . . . . . . . . . 14 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
181180ffvelcdmda 7038 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝐸𝑐) ∈ ℕ)
182154, 158, 179, 181ressmulgnnd 18986 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
183 eqidd 2730 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
184 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → 𝑗 = 𝑐)
185184fveq2d 6844 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → (𝐸𝑗) = (𝐸𝑐))
186185oveq1d 7384 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
187 ovexd 7404 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
188183, 186, 151, 187fvmptd 6957 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
189188eqcomd 2735 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐))
190153, 182, 1893eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))‘𝑐) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐))
191142, 146, 190eqfnfvd 6988 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
192137, 191eqtrd 2764 . . . . . . . . 9 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
193133, 192eqtrd 2764 . . . . . . . 8 (𝜑 → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
194131, 193eqtrd 2764 . . . . . . 7 (𝜑 → ((𝐽𝐸) ↾ (ℕ0 × ℕ0)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
195194imaeq1d 6019 . . . . . 6 (𝜑 → (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
196103, 195eqtrd 2764 . . . . 5 (𝜑 → ((𝐽𝐸) “ (ℕ0 × ℕ0)) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
197100, 196eqtrid 2776 . . . 4 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
198197fveq2d 6844 . . 3 (𝜑 → (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) = (♯‘((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0))))
19998, 198breqtrd 5128 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0))))
2001, 2, 3, 4, 5, 6, 7, 8, 87, 88, 55, 89, 90, 91, 92, 93, 94, 95, 96, 97, 199aks6d1c6lem3 42133 1 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  cop 4591   class class class wbr 5102  {copab 5164  cmpt 5183   × cxp 5629  cres 5633  cima 5634  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  m cmap 8776  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  ...cfz 13444  cfl 13728  cexp 14002  Ccbc 14243  chash 14271  csqrt 15175  Σcsu 15628  cdvds 16198   gcd cgcd 16440  cprime 16617  ϕcphi 16710  Basecbs 17155  s cress 17176  +gcplusg 17196  0gc0g 17378   Σg cgsu 17379  .gcmg 18975  CMndccmn 19686  Abelcabl 19687  mulGrpcmgp 20025  CRingccrg 20119   RingIso crs 20355  Fieldcfield 20615  ℤRHomczrh 21385  chrcchr 21387  ℤ/nczn 21388  algSccascl 21737  var1cv1 22036  Poly1cpl1 22037  eval1ce1 22177   logb clogb 26650   PrimRoots cprimroots 42052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-pws 17388  df-xrs 17441  df-qtop 17446  df-imas 17447  df-qus 17448  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-nsg 19032  df-eqg 19033  df-ghm 19121  df-cntz 19225  df-od 19434  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-rim 20358  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-lmod 20744  df-lss 20814  df-lsp 20854  df-sra 21056  df-rgmod 21057  df-lidl 21094  df-rsp 21095  df-2idl 21136  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-zring 21333  df-zrh 21389  df-chr 21391  df-zn 21392  df-assa 21738  df-asp 21739  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-evls 21957  df-evl 21958  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-evl1 22179  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-mdeg 25936  df-deg1 25937  df-mon1 26012  df-uc1p 26013  df-q1p 26014  df-r1p 26015  df-log 26441  df-logb 26651  df-primroots 42053
This theorem is referenced by:  aks6d1c6lem5  42138
  Copyright terms: Public domain W3C validator