Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem4 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem4 42161
Description: Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf Add hypothesis on coprimality, lift function to the integers so that group operations may be applied. Inline definition. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6lem4.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6lem4.2 𝑃 = (chr‘𝐾)
aks6d1c6lem4.3 (𝜑𝐾 ∈ Field)
aks6d1c6lem4.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6lem4.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6lem4.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6lem4.7 (𝜑𝑃𝑁)
aks6d1c6lem4.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6lem4.9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c6lem4.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6lem4.11 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aksaks6dlem4.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6lem4.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6lem4.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6lem4.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6lem4.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6lem4.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6lem4.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6lem4.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem4.20 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
aks6d1c6lem4.21 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
aks6d1c6lem4.22 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
Assertion
Ref Expression
aks6d1c6lem4 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Distinct variable groups:   ,𝑎   𝑃,𝑘,𝑙,𝑠   𝜑,   𝑁,𝑠   𝜑,𝑘,𝑙   ,𝐾   𝑦,𝑘,𝑙,𝜑   𝑔,𝐾,𝑥   𝑒,𝐾,𝑓   𝑚,𝐾,𝑛   𝑘,𝑁,𝑙,𝑥   𝑥,𝑅   𝑃,𝑗   𝑒,𝑁,𝑓   𝑆,𝑠,𝑡   𝑃,𝑒,𝑓   𝑗,𝑁   𝑅,𝑒,𝑓,𝑦   𝑗,𝐾   𝑦,𝑀   𝑁,𝑎   ,𝑀,𝑗   𝑥,𝑃   𝑆,,𝑗   𝜑,𝑗   𝑈,𝑗   𝑆,𝑎   𝑆,𝑔,𝑖,𝑥,𝑦   𝜑,𝑔,𝑖,𝑥   𝜑,𝑠,𝑡   𝜑,𝑎   𝑃,𝑏   𝑁,𝑏   𝐾,𝑎   𝑖,𝐾,𝑡,𝑦,𝑥   𝐷,𝑠   ,𝐺   𝑡,𝐺   𝑔,𝐺,𝑖,𝑦   𝐻,𝑠,𝑡   ,𝐻,𝑗   𝑥,𝐸   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸   𝑔,𝐻,𝑖,𝑥,𝑦   𝐴,𝑎   𝑒,𝐺,𝑓   𝐴,𝑏   𝐻,𝑎   𝐴,𝑔,𝑖,𝑥   𝐴,,𝑗   𝐴,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑚,𝑛,𝑏)   𝐴(𝑦,𝑒,𝑓,𝑘,𝑚,𝑛,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑎,𝑏,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑆(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝑈(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐸(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝐽(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐾(𝑘,𝑠,𝑏,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛)

Proof of Theorem aks6d1c6lem4
Dummy variables 𝑣 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6lem4.1 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
2 aks6d1c6lem4.2 . 2 𝑃 = (chr‘𝐾)
3 aks6d1c6lem4.3 . 2 (𝜑𝐾 ∈ Field)
4 aks6d1c6lem4.4 . 2 (𝜑𝑃 ∈ ℙ)
5 aks6d1c6lem4.5 . 2 (𝜑𝑅 ∈ ℕ)
6 aks6d1c6lem4.6 . 2 (𝜑𝑁 ∈ ℕ)
7 aks6d1c6lem4.7 . 2 (𝜑𝑃𝑁)
8 aks6d1c6lem4.8 . 2 (𝜑 → (𝑁 gcd 𝑅) = 1)
9 simpr 484 . . 3 ((𝜑𝐴 < 𝑃) → 𝐴 < 𝑃)
10 prmnn 16644 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
114, 10syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
1211nnred 12201 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
13 aks6d1c6lem4.11 . . . . . . . . 9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
145phicld 16742 . . . . . . . . . . . . . . 15 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
1514nnred 12201 . . . . . . . . . . . . . 14 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
1614nnnn0d 12503 . . . . . . . . . . . . . . 15 (𝜑 → (ϕ‘𝑅) ∈ ℕ0)
1716nn0ge0d 12506 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (ϕ‘𝑅))
1815, 17resqrtcld 15384 . . . . . . . . . . . . 13 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
19 2re 12260 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
21 2pos 12289 . . . . . . . . . . . . . . 15 0 < 2
2221a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
236nnred 12201 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
246nngt0d 12235 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
25 1red 11175 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
26 1lt2 12352 . . . . . . . . . . . . . . . . 17 1 < 2
2726a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
2825, 27ltned 11310 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
2928necomd 2980 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
3020, 22, 23, 24, 29relogbcld 41961 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
3118, 30remulcld 11204 . . . . . . . . . . . 12 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
3231flcld 13760 . . . . . . . . . . 11 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
3315, 17sqrtge0d 15387 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
3420recnd 11202 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℂ)
3522gt0ne0d 11742 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 0)
36 logb1 26679 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
3734, 35, 29, 36syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 1) = 0)
3837eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → 0 = (2 logb 1))
39 2z 12565 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
4039a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℤ)
4120leidd 11744 . . . . . . . . . . . . . . 15 (𝜑 → 2 ≤ 2)
42 0lt1 11700 . . . . . . . . . . . . . . . 16 0 < 1
4342a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 1)
446nnge1d 12234 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑁)
4540, 41, 25, 43, 23, 24, 44logblebd 41964 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 1) ≤ (2 logb 𝑁))
4638, 45eqbrtrd 5129 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (2 logb 𝑁))
4718, 30, 33, 46mulge0d 11755 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
48 0zd 12541 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
49 flge 13767 . . . . . . . . . . . . 13 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5031, 48, 49syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5147, 50mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
5232, 51jca 511 . . . . . . . . . 10 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
53 elnn0z 12542 . . . . . . . . . 10 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5452, 53sylibr 234 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
5513, 54eqeltrid 2832 . . . . . . . 8 (𝜑𝐴 ∈ ℕ0)
5655nn0red 12504 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5712, 56lenltd 11320 . . . . . 6 (𝜑 → (𝑃𝐴 ↔ ¬ 𝐴 < 𝑃))
5857biimpar 477 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → 𝑃𝐴)
59 oveq1 7394 . . . . . . . . 9 (𝑏 = 𝑃 → (𝑏 gcd 𝑁) = (𝑃 gcd 𝑁))
6059eqeq1d 2731 . . . . . . . 8 (𝑏 = 𝑃 → ((𝑏 gcd 𝑁) = 1 ↔ (𝑃 gcd 𝑁) = 1))
61 aks6d1c6lem4.9 . . . . . . . . 9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
6261adantr 480 . . . . . . . 8 ((𝜑𝑃𝐴) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
63 1zzd 12564 . . . . . . . . 9 ((𝜑𝑃𝐴) → 1 ∈ ℤ)
6413, 32eqeltrid 2832 . . . . . . . . . 10 (𝜑𝐴 ∈ ℤ)
6564adantr 480 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝐴 ∈ ℤ)
6611nnzd 12556 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6766adantr 480 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝑃 ∈ ℤ)
6811nnge1d 12234 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑃)
6968adantr 480 . . . . . . . . 9 ((𝜑𝑃𝐴) → 1 ≤ 𝑃)
70 simpr 484 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝑃𝐴)
7163, 65, 67, 69, 70elfzd 13476 . . . . . . . 8 ((𝜑𝑃𝐴) → 𝑃 ∈ (1...𝐴))
7260, 62, 71rspcdva 3589 . . . . . . 7 ((𝜑𝑃𝐴) → (𝑃 gcd 𝑁) = 1)
7372ex 412 . . . . . 6 (𝜑 → (𝑃𝐴 → (𝑃 gcd 𝑁) = 1))
7473adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃𝐴 → (𝑃 gcd 𝑁) = 1))
7558, 74mpd 15 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃 gcd 𝑁) = 1)
766nnzd 12556 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
77 coprm 16681 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
784, 76, 77syl2anc 584 . . . . . . . . . . 11 (𝜑 → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
7978con1bid 355 . . . . . . . . . 10 (𝜑 → (¬ (𝑃 gcd 𝑁) = 1 ↔ 𝑃𝑁))
8079bicomd 223 . . . . . . . . 9 (𝜑 → (𝑃𝑁 ↔ ¬ (𝑃 gcd 𝑁) = 1))
8180biimpd 229 . . . . . . . 8 (𝜑 → (𝑃𝑁 → ¬ (𝑃 gcd 𝑁) = 1))
827, 81mpd 15 . . . . . . 7 (𝜑 → ¬ (𝑃 gcd 𝑁) = 1)
8382neqned 2932 . . . . . 6 (𝜑 → (𝑃 gcd 𝑁) ≠ 1)
8483adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃 gcd 𝑁) ≠ 1)
8584neneqd 2930 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → ¬ (𝑃 gcd 𝑁) = 1)
8675, 85pm2.21dd 195 . . 3 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → 𝐴 < 𝑃)
879, 86pm2.61dan 812 . 2 (𝜑𝐴 < 𝑃)
88 aks6d1c6lem4.10 . 2 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
89 aksaks6dlem4.12 . 2 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
90 aks6d1c6lem4.13 . 2 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
91 aks6d1c6lem4.14 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
92 aks6d1c6lem4.15 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
93 aks6d1c6lem4.16 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
94 aks6d1c6lem4.17 . 2 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
95 aks6d1c6lem4.18 . 2 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
96 aks6d1c6lem4.19 . 2 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
97 eqid 2729 . 2 (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
98 aks6d1c6lem4.21 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
99 imaco 6224 . . . . . 6 ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))
10099eqcomi 2738 . . . . 5 (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝐽𝐸) “ (ℕ0 × ℕ0))
101 resima 5986 . . . . . . . 8 (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)) = ((𝐽𝐸) “ (ℕ0 × ℕ0))
102101eqcomi 2738 . . . . . . 7 ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0))
103102a1i 11 . . . . . 6 (𝜑 → ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)))
10466adantr 480 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℤ)
105 xp1st 8000 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) → (1st𝑣) ∈ ℕ0)
106105adantl 481 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (1st𝑣) ∈ ℕ0)
107104, 106zexpcld 14052 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st𝑣)) ∈ ℤ)
10811nnne0d 12236 . . . . . . . . . . . . . . 15 (𝜑𝑃 ≠ 0)
109 dvdsval2 16225 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
11066, 108, 76, 109syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
1117, 110mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
112111adantr 480 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℤ)
113 xp2nd 8001 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) → (2nd𝑣) ∈ ℕ0)
114113adantl 481 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (2nd𝑣) ∈ ℕ0)
115112, 114zexpcld 14052 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd𝑣)) ∈ ℤ)
116107, 115zmulcld 12644 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) ∈ ℤ)
117 vex 3451 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
118 vex 3451 . . . . . . . . . . . . . . . 16 𝑙 ∈ V
119117, 118op1std 7978 . . . . . . . . . . . . . . 15 (𝑣 = ⟨𝑘, 𝑙⟩ → (1st𝑣) = 𝑘)
120119oveq2d 7403 . . . . . . . . . . . . . 14 (𝑣 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑣)) = (𝑃𝑘))
121117, 118op2ndd 7979 . . . . . . . . . . . . . . 15 (𝑣 = ⟨𝑘, 𝑙⟩ → (2nd𝑣) = 𝑙)
122121oveq2d 7403 . . . . . . . . . . . . . 14 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑣)) = ((𝑁 / 𝑃)↑𝑙))
123120, 122oveq12d 7405 . . . . . . . . . . . . 13 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
124123mpompt 7503 . . . . . . . . . . . 12 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
12589, 124eqtr4i 2755 . . . . . . . . . . 11 𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
126125a1i 11 . . . . . . . . . 10 (𝜑𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))))
127 aks6d1c6lem4.20 . . . . . . . . . . 11 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
128127a1i 11 . . . . . . . . . 10 (𝜑𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
129 oveq1 7394 . . . . . . . . . 10 (𝑗 = ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
130116, 126, 128, 129fmptco 7101 . . . . . . . . 9 (𝜑 → (𝐽𝐸) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
131130reseq1d 5949 . . . . . . . 8 (𝜑 → ((𝐽𝐸) ↾ (ℕ0 × ℕ0)) = ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)))
132 ssidd 3970 . . . . . . . . . 10 (𝜑 → (ℕ0 × ℕ0) ⊆ (ℕ0 × ℕ0))
133132resmptd 6011 . . . . . . . . 9 (𝜑 → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
134126, 116fvmpt2d 6981 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝐸𝑣) = ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
135134oveq1d 7402 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
136135mpteq2dva 5200 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
137136eqcomd 2735 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
138 ovexd 7422 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
139 eqid 2729 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
140138, 139fmptd 7086 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)):(ℕ0 × ℕ0)⟶V)
141 ffn 6688 . . . . . . . . . . . 12 ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)):(ℕ0 × ℕ0)⟶V → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) Fn (ℕ0 × ℕ0))
142140, 141syl 17 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) Fn (ℕ0 × ℕ0))
143 ovexd 7422 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
144143, 97fmptd 7086 . . . . . . . . . . . 12 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)):(ℕ0 × ℕ0)⟶V)
145 ffn 6688 . . . . . . . . . . . 12 ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)):(ℕ0 × ℕ0)⟶V → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) Fn (ℕ0 × ℕ0))
146144, 145syl 17 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) Fn (ℕ0 × ℕ0))
147 eqidd 2730 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
148 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → 𝑣 = 𝑐)
149148fveq2d 6862 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → (𝐸𝑣) = (𝐸𝑐))
150149oveq1d 7402 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
151 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑐 ∈ (ℕ0 × ℕ0))
152 ovexd 7422 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
153147, 150, 151, 152fvmptd 6975 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))‘𝑐) = ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
154 eqid 2729 . . . . . . . . . . . . 13 ((mulGrp‘𝐾) ↾s 𝑈) = ((mulGrp‘𝐾) ↾s 𝑈)
155 aks6d1c6lem4.22 . . . . . . . . . . . . . . . 16 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
156155ssrab3 4045 . . . . . . . . . . . . . . 15 𝑈 ⊆ (Base‘(mulGrp‘𝐾))
157156a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘(mulGrp‘𝐾)))
158157adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑈 ⊆ (Base‘(mulGrp‘𝐾)))
1593fldcrngd 20651 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ CRing)
160 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (mulGrp‘𝐾) = (mulGrp‘𝐾)
161160crngmgp 20150 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
162159, 161syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
163162, 5, 155primrootsunit 42086 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel))
164163simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
16593, 164eleqtrd 2830 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
166163simprd 495 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)
167 ablcmn 19717 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
168166, 167syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
1695nnnn0d 12503 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ∈ ℕ0)
170 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (.g‘((mulGrp‘𝐾) ↾s 𝑈)) = (.g‘((mulGrp‘𝐾) ↾s 𝑈))
171168, 169, 170isprimroot 42081 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤))))
172171biimpd 229 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤))))
173165, 172mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤)))
174173simp1d 1142 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
175 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
176154, 175ressbas2 17208 . . . . . . . . . . . . . . . 16 (𝑈 ⊆ (Base‘(mulGrp‘𝐾)) → 𝑈 = (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
177157, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
178174, 177eleqtrrd 2831 . . . . . . . . . . . . . 14 (𝜑𝑀𝑈)
179178adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑀𝑈)
1806, 4, 7, 89aks6d1c2p1 42106 . . . . . . . . . . . . . 14 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
181180ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝐸𝑐) ∈ ℕ)
182154, 158, 179, 181ressmulgnnd 19010 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
183 eqidd 2730 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
184 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → 𝑗 = 𝑐)
185184fveq2d 6862 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → (𝐸𝑗) = (𝐸𝑐))
186185oveq1d 7402 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
187 ovexd 7422 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
188183, 186, 151, 187fvmptd 6975 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
189188eqcomd 2735 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐))
190153, 182, 1893eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))‘𝑐) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐))
191142, 146, 190eqfnfvd 7006 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
192137, 191eqtrd 2764 . . . . . . . . 9 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
193133, 192eqtrd 2764 . . . . . . . 8 (𝜑 → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
194131, 193eqtrd 2764 . . . . . . 7 (𝜑 → ((𝐽𝐸) ↾ (ℕ0 × ℕ0)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
195194imaeq1d 6030 . . . . . 6 (𝜑 → (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
196103, 195eqtrd 2764 . . . . 5 (𝜑 → ((𝐽𝐸) “ (ℕ0 × ℕ0)) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
197100, 196eqtrid 2776 . . . 4 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
198197fveq2d 6862 . . 3 (𝜑 → (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) = (♯‘((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0))))
19998, 198breqtrd 5133 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0))))
2001, 2, 3, 4, 5, 6, 7, 8, 87, 88, 55, 89, 90, 91, 92, 93, 94, 95, 96, 97, 199aks6d1c6lem3 42160 1 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  cop 4595   class class class wbr 5107  {copab 5169  cmpt 5188   × cxp 5636  cres 5640  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  m cmap 8799  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  ...cfz 13468  cfl 13752  cexp 14026  Ccbc 14267  chash 14295  csqrt 15199  Σcsu 15652  cdvds 16222   gcd cgcd 16464  cprime 16641  ϕcphi 16734  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  .gcmg 18999  CMndccmn 19710  Abelcabl 19711  mulGrpcmgp 20049  CRingccrg 20143   RingIso crs 20379  Fieldcfield 20639  ℤRHomczrh 21409  chrcchr 21411  ℤ/nczn 21412  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  eval1ce1 22201   logb clogb 26674   PrimRoots cprimroots 42079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-pws 17412  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cntz 19249  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-rim 20382  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-chr 21415  df-zn 21416  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evl1 22203  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037  df-q1p 26038  df-r1p 26039  df-log 26465  df-logb 26675  df-primroots 42080
This theorem is referenced by:  aks6d1c6lem5  42165
  Copyright terms: Public domain W3C validator