Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem4 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem4 41776
Description: Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf Add hypothesis on coprimality, lift function to the integers so that group operations may be applied. Inline definition. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6lem4.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6lem4.2 𝑃 = (chr‘𝐾)
aks6d1c6lem4.3 (𝜑𝐾 ∈ Field)
aks6d1c6lem4.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6lem4.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6lem4.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6lem4.7 (𝜑𝑃𝑁)
aks6d1c6lem4.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6lem4.9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c6lem4.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6lem4.11 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aksaks6dlem4.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6lem4.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6lem4.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6lem4.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6lem4.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6lem4.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6lem4.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6lem4.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem4.20 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
aks6d1c6lem4.21 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
aks6d1c6lem4.22 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
Assertion
Ref Expression
aks6d1c6lem4 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Distinct variable groups:   ,𝑎   𝐴,𝑎   𝐴,𝑏   𝐴,𝑔,𝑖,𝑥   𝐴,,𝑗   𝐴,𝑠,𝑡   𝐷,𝑠   𝑗,𝐸   𝑒,𝐸,𝑓,𝑦   𝑥,𝐸,𝑦   𝑒,𝐺,𝑓,𝑦   𝑔,𝐺,𝑖,𝑦   ,𝐺   𝑡,𝐺,𝑖,𝑦   𝐻,𝑎   𝑔,𝐻,𝑖,𝑥,𝑦   ,𝐻,𝑗   𝐻,𝑠,𝑡   𝐾,𝑎   𝑗,𝐾   𝑒,𝐾,𝑓,𝑦   𝑔,𝐾,𝑖,𝑥   ,𝐾   𝑚,𝐾,𝑛   𝑡,𝐾,𝑥   𝑗,𝑀,   𝑦,𝑀   𝑁,𝑎   𝑁,𝑏   𝑒,𝑁,𝑓   𝑗,𝑁   𝑘,𝑁,𝑙,𝑠   𝑥,𝑁,𝑘,𝑙   𝑃,𝑏   𝑃,𝑒,𝑓   𝑃,𝑗   𝑃,𝑘,𝑙,𝑠   𝑥,𝑃   𝑅,𝑒,𝑓,𝑦   𝑥,𝑅   𝑆,𝑎   𝑆,𝑔,𝑖,𝑥,𝑦   𝑆,,𝑗   𝑆,𝑠,𝑡   𝑈,𝑗   𝜑,𝑎   𝜑,𝑗   𝜑,𝑔,𝑖,𝑥,𝑦   𝜑,   𝜑,𝑘,𝑙,𝑠   𝑦,𝑘,𝑙   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑚,𝑛,𝑏)   𝐴(𝑦,𝑒,𝑓,𝑘,𝑚,𝑛,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑎,𝑏,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑆(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝑈(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐸(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝐽(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐾(𝑘,𝑠,𝑏,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛)

Proof of Theorem aks6d1c6lem4
Dummy variables 𝑐 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6lem4.1 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
2 aks6d1c6lem4.2 . 2 𝑃 = (chr‘𝐾)
3 aks6d1c6lem4.3 . 2 (𝜑𝐾 ∈ Field)
4 aks6d1c6lem4.4 . 2 (𝜑𝑃 ∈ ℙ)
5 aks6d1c6lem4.5 . 2 (𝜑𝑅 ∈ ℕ)
6 aks6d1c6lem4.6 . 2 (𝜑𝑁 ∈ ℕ)
7 aks6d1c6lem4.7 . 2 (𝜑𝑃𝑁)
8 aks6d1c6lem4.8 . 2 (𝜑 → (𝑁 gcd 𝑅) = 1)
9 simpr 483 . . 3 ((𝜑𝐴 < 𝑃) → 𝐴 < 𝑃)
10 prmnn 16648 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
114, 10syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
1211nnred 12260 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
13 aks6d1c6lem4.11 . . . . . . . . 9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
145phicld 16744 . . . . . . . . . . . . . . 15 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
1514nnred 12260 . . . . . . . . . . . . . 14 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
1614nnnn0d 12565 . . . . . . . . . . . . . . 15 (𝜑 → (ϕ‘𝑅) ∈ ℕ0)
1716nn0ge0d 12568 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (ϕ‘𝑅))
1815, 17resqrtcld 15400 . . . . . . . . . . . . 13 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
19 2re 12319 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
21 2pos 12348 . . . . . . . . . . . . . . 15 0 < 2
2221a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
236nnred 12260 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
246nngt0d 12294 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
25 1red 11247 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
26 1lt2 12416 . . . . . . . . . . . . . . . . 17 1 < 2
2726a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
2825, 27ltned 11382 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
2928necomd 2985 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
3020, 22, 23, 24, 29relogbcld 41575 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
3118, 30remulcld 11276 . . . . . . . . . . . 12 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
3231flcld 13799 . . . . . . . . . . 11 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
3315, 17sqrtge0d 15403 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
3420recnd 11274 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℂ)
3522gt0ne0d 11810 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 0)
36 logb1 26746 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
3734, 35, 29, 36syl3anc 1368 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 1) = 0)
3837eqcomd 2731 . . . . . . . . . . . . . 14 (𝜑 → 0 = (2 logb 1))
39 2z 12627 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
4039a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℤ)
4120leidd 11812 . . . . . . . . . . . . . . 15 (𝜑 → 2 ≤ 2)
42 0lt1 11768 . . . . . . . . . . . . . . . 16 0 < 1
4342a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 1)
446nnge1d 12293 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑁)
4540, 41, 25, 43, 23, 24, 44logblebd 41578 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 1) ≤ (2 logb 𝑁))
4638, 45eqbrtrd 5171 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (2 logb 𝑁))
4718, 30, 33, 46mulge0d 11823 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
48 0zd 12603 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
49 flge 13806 . . . . . . . . . . . . 13 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5031, 48, 49syl2anc 582 . . . . . . . . . . . 12 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5147, 50mpbid 231 . . . . . . . . . . 11 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
5232, 51jca 510 . . . . . . . . . 10 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
53 elnn0z 12604 . . . . . . . . . 10 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5452, 53sylibr 233 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
5513, 54eqeltrid 2829 . . . . . . . 8 (𝜑𝐴 ∈ ℕ0)
5655nn0red 12566 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5712, 56lenltd 11392 . . . . . 6 (𝜑 → (𝑃𝐴 ↔ ¬ 𝐴 < 𝑃))
5857biimpar 476 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → 𝑃𝐴)
59 oveq1 7426 . . . . . . . . 9 (𝑏 = 𝑃 → (𝑏 gcd 𝑁) = (𝑃 gcd 𝑁))
6059eqeq1d 2727 . . . . . . . 8 (𝑏 = 𝑃 → ((𝑏 gcd 𝑁) = 1 ↔ (𝑃 gcd 𝑁) = 1))
61 aks6d1c6lem4.9 . . . . . . . . 9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
6261adantr 479 . . . . . . . 8 ((𝜑𝑃𝐴) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
63 1zzd 12626 . . . . . . . . 9 ((𝜑𝑃𝐴) → 1 ∈ ℤ)
6413, 32eqeltrid 2829 . . . . . . . . . 10 (𝜑𝐴 ∈ ℤ)
6564adantr 479 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝐴 ∈ ℤ)
6611nnzd 12618 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6766adantr 479 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝑃 ∈ ℤ)
6811nnge1d 12293 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑃)
6968adantr 479 . . . . . . . . 9 ((𝜑𝑃𝐴) → 1 ≤ 𝑃)
70 simpr 483 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝑃𝐴)
7163, 65, 67, 69, 70elfzd 13527 . . . . . . . 8 ((𝜑𝑃𝐴) → 𝑃 ∈ (1...𝐴))
7260, 62, 71rspcdva 3607 . . . . . . 7 ((𝜑𝑃𝐴) → (𝑃 gcd 𝑁) = 1)
7372ex 411 . . . . . 6 (𝜑 → (𝑃𝐴 → (𝑃 gcd 𝑁) = 1))
7473adantr 479 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃𝐴 → (𝑃 gcd 𝑁) = 1))
7558, 74mpd 15 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃 gcd 𝑁) = 1)
766nnzd 12618 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
77 coprm 16685 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
784, 76, 77syl2anc 582 . . . . . . . . . . 11 (𝜑 → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
7978con1bid 354 . . . . . . . . . 10 (𝜑 → (¬ (𝑃 gcd 𝑁) = 1 ↔ 𝑃𝑁))
8079bicomd 222 . . . . . . . . 9 (𝜑 → (𝑃𝑁 ↔ ¬ (𝑃 gcd 𝑁) = 1))
8180biimpd 228 . . . . . . . 8 (𝜑 → (𝑃𝑁 → ¬ (𝑃 gcd 𝑁) = 1))
827, 81mpd 15 . . . . . . 7 (𝜑 → ¬ (𝑃 gcd 𝑁) = 1)
8382neqned 2936 . . . . . 6 (𝜑 → (𝑃 gcd 𝑁) ≠ 1)
8483adantr 479 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃 gcd 𝑁) ≠ 1)
8584neneqd 2934 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → ¬ (𝑃 gcd 𝑁) = 1)
8675, 85pm2.21dd 194 . . 3 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → 𝐴 < 𝑃)
879, 86pm2.61dan 811 . 2 (𝜑𝐴 < 𝑃)
88 aks6d1c6lem4.10 . 2 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
89 aksaks6dlem4.12 . 2 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
90 aks6d1c6lem4.13 . 2 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
91 aks6d1c6lem4.14 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
92 aks6d1c6lem4.15 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
93 aks6d1c6lem4.16 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
94 aks6d1c6lem4.17 . 2 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
95 aks6d1c6lem4.18 . 2 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
96 aks6d1c6lem4.19 . 2 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
97 eqid 2725 . 2 (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
98 aks6d1c6lem4.21 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
99 imaco 6257 . . . . . 6 ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))
10099eqcomi 2734 . . . . 5 (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝐽𝐸) “ (ℕ0 × ℕ0))
101 resima 6020 . . . . . . . 8 (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)) = ((𝐽𝐸) “ (ℕ0 × ℕ0))
102101eqcomi 2734 . . . . . . 7 ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0))
103102a1i 11 . . . . . 6 (𝜑 → ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)))
10466adantr 479 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℤ)
105 xp1st 8026 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) → (1st𝑣) ∈ ℕ0)
106105adantl 480 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (1st𝑣) ∈ ℕ0)
107104, 106zexpcld 14088 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st𝑣)) ∈ ℤ)
10811nnne0d 12295 . . . . . . . . . . . . . . 15 (𝜑𝑃 ≠ 0)
109 dvdsval2 16237 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
11066, 108, 76, 109syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
1117, 110mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
112111adantr 479 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℤ)
113 xp2nd 8027 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) → (2nd𝑣) ∈ ℕ0)
114113adantl 480 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (2nd𝑣) ∈ ℕ0)
115112, 114zexpcld 14088 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd𝑣)) ∈ ℤ)
116107, 115zmulcld 12705 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) ∈ ℤ)
117 vex 3465 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
118 vex 3465 . . . . . . . . . . . . . . . 16 𝑙 ∈ V
119117, 118op1std 8004 . . . . . . . . . . . . . . 15 (𝑣 = ⟨𝑘, 𝑙⟩ → (1st𝑣) = 𝑘)
120119oveq2d 7435 . . . . . . . . . . . . . 14 (𝑣 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑣)) = (𝑃𝑘))
121117, 118op2ndd 8005 . . . . . . . . . . . . . . 15 (𝑣 = ⟨𝑘, 𝑙⟩ → (2nd𝑣) = 𝑙)
122121oveq2d 7435 . . . . . . . . . . . . . 14 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑣)) = ((𝑁 / 𝑃)↑𝑙))
123120, 122oveq12d 7437 . . . . . . . . . . . . 13 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
124123mpompt 7534 . . . . . . . . . . . 12 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
12589, 124eqtr4i 2756 . . . . . . . . . . 11 𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
126125a1i 11 . . . . . . . . . 10 (𝜑𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))))
127 aks6d1c6lem4.20 . . . . . . . . . . 11 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
128127a1i 11 . . . . . . . . . 10 (𝜑𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
129 oveq1 7426 . . . . . . . . . 10 (𝑗 = ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
130116, 126, 128, 129fmptco 7138 . . . . . . . . 9 (𝜑 → (𝐽𝐸) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
131130reseq1d 5984 . . . . . . . 8 (𝜑 → ((𝐽𝐸) ↾ (ℕ0 × ℕ0)) = ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)))
132 ssidd 4000 . . . . . . . . . 10 (𝜑 → (ℕ0 × ℕ0) ⊆ (ℕ0 × ℕ0))
133132resmptd 6045 . . . . . . . . 9 (𝜑 → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
134126, 116fvmpt2d 7017 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝐸𝑣) = ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
135134oveq1d 7434 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
136135mpteq2dva 5249 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
137136eqcomd 2731 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
138 ovexd 7454 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
139 eqid 2725 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
140138, 139fmptd 7123 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)):(ℕ0 × ℕ0)⟶V)
141 ffn 6723 . . . . . . . . . . . 12 ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)):(ℕ0 × ℕ0)⟶V → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) Fn (ℕ0 × ℕ0))
142140, 141syl 17 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) Fn (ℕ0 × ℕ0))
143 ovexd 7454 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
144143, 97fmptd 7123 . . . . . . . . . . . 12 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)):(ℕ0 × ℕ0)⟶V)
145 ffn 6723 . . . . . . . . . . . 12 ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)):(ℕ0 × ℕ0)⟶V → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) Fn (ℕ0 × ℕ0))
146144, 145syl 17 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) Fn (ℕ0 × ℕ0))
147 eqidd 2726 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
148 simpr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → 𝑣 = 𝑐)
149148fveq2d 6900 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → (𝐸𝑣) = (𝐸𝑐))
150149oveq1d 7434 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
151 simpr 483 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑐 ∈ (ℕ0 × ℕ0))
152 ovexd 7454 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
153147, 150, 151, 152fvmptd 7011 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))‘𝑐) = ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
154 eqid 2725 . . . . . . . . . . . . 13 ((mulGrp‘𝐾) ↾s 𝑈) = ((mulGrp‘𝐾) ↾s 𝑈)
155 aks6d1c6lem4.22 . . . . . . . . . . . . . . . 16 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
156155ssrab3 4076 . . . . . . . . . . . . . . 15 𝑈 ⊆ (Base‘(mulGrp‘𝐾))
157156a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘(mulGrp‘𝐾)))
158157adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑈 ⊆ (Base‘(mulGrp‘𝐾)))
1593fldcrngd 20649 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ CRing)
160 eqid 2725 . . . . . . . . . . . . . . . . . . . . . 22 (mulGrp‘𝐾) = (mulGrp‘𝐾)
161160crngmgp 20193 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
162159, 161syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
163162, 5, 155primrootsunit 41700 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel))
164163simpld 493 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
16593, 164eleqtrd 2827 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
166163simprd 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)
167 ablcmn 19754 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
168166, 167syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
1695nnnn0d 12565 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ∈ ℕ0)
170 eqid 2725 . . . . . . . . . . . . . . . . . . 19 (.g‘((mulGrp‘𝐾) ↾s 𝑈)) = (.g‘((mulGrp‘𝐾) ↾s 𝑈))
171168, 169, 170isprimroot 41696 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤))))
172171biimpd 228 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤))))
173165, 172mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤)))
174173simp1d 1139 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
175 eqid 2725 . . . . . . . . . . . . . . . . 17 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
176154, 175ressbas2 17221 . . . . . . . . . . . . . . . 16 (𝑈 ⊆ (Base‘(mulGrp‘𝐾)) → 𝑈 = (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
177157, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
178174, 177eleqtrrd 2828 . . . . . . . . . . . . . 14 (𝜑𝑀𝑈)
179178adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑀𝑈)
1806, 4, 7, 89aks6d1c2p1 41721 . . . . . . . . . . . . . 14 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
181180ffvelcdmda 7093 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝐸𝑐) ∈ ℕ)
182154, 158, 179, 181ressmulgnnd 41701 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
183 eqidd 2726 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
184 simpr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → 𝑗 = 𝑐)
185184fveq2d 6900 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → (𝐸𝑗) = (𝐸𝑐))
186185oveq1d 7434 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
187 ovexd 7454 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
188183, 186, 151, 187fvmptd 7011 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
189188eqcomd 2731 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐))
190153, 182, 1893eqtrd 2769 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))‘𝑐) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐))
191142, 146, 190eqfnfvd 7042 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
192137, 191eqtrd 2765 . . . . . . . . 9 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
193133, 192eqtrd 2765 . . . . . . . 8 (𝜑 → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
194131, 193eqtrd 2765 . . . . . . 7 (𝜑 → ((𝐽𝐸) ↾ (ℕ0 × ℕ0)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
195194imaeq1d 6063 . . . . . 6 (𝜑 → (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
196103, 195eqtrd 2765 . . . . 5 (𝜑 → ((𝐽𝐸) “ (ℕ0 × ℕ0)) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
197100, 196eqtrid 2777 . . . 4 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
198197fveq2d 6900 . . 3 (𝜑 → (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) = (♯‘((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0))))
19998, 198breqtrd 5175 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0))))
2001, 2, 3, 4, 5, 6, 7, 8, 87, 88, 55, 89, 90, 91, 92, 93, 94, 95, 96, 97, 199aks6d1c6lem3 41775 1 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  wss 3944  cop 4636   class class class wbr 5149  {copab 5211  cmpt 5232   × cxp 5676  cres 5680  cima 5681  ccom 5682   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  cmpo 7421  1st c1st 7992  2nd c2nd 7993  m cmap 8845  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145   < clt 11280  cle 11281  cmin 11476   / cdiv 11903  cn 12245  2c2 12300  0cn0 12505  cz 12591  ...cfz 13519  cfl 13791  cexp 14062  Ccbc 14297  chash 14325  csqrt 15216  Σcsu 15668  cdvds 16234   gcd cgcd 16472  cprime 16645  ϕcphi 16736  Basecbs 17183  s cress 17212  +gcplusg 17236  0gc0g 17424   Σg cgsu 17425  .gcmg 19031  CMndccmn 19747  Abelcabl 19748  mulGrpcmgp 20086  CRingccrg 20186   RingIso crs 20421  Fieldcfield 20637  ℤRHomczrh 21442  chrcchr 21444  ℤ/nczn 21445  algSccascl 21803  var1cv1 22118  Poly1cpl1 22119  eval1ce1 22258   logb clogb 26741   PrimRoots cprimroots 41694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-xnn0 12578  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-ef 16047  df-sin 16049  df-cos 16050  df-pi 16052  df-dvds 16235  df-gcd 16473  df-prm 16646  df-phi 16738  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-pws 17434  df-xrs 17487  df-qtop 17492  df-imas 17493  df-qus 17494  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-nsg 19087  df-eqg 19088  df-ghm 19176  df-cntz 19280  df-od 19495  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-srg 20139  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-rhm 20423  df-rim 20424  df-nzr 20464  df-subrng 20495  df-subrg 20520  df-drng 20638  df-field 20639  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-2idl 21157  df-rlreg 21247  df-domn 21248  df-idom 21249  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-zring 21390  df-zrh 21446  df-chr 21448  df-zn 21449  df-assa 21804  df-asp 21805  df-ascl 21806  df-psr 21859  df-mvr 21860  df-mpl 21861  df-opsr 21863  df-evls 22040  df-evl 22041  df-psr1 22122  df-vr1 22123  df-ply1 22124  df-coe1 22125  df-evl1 22260  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840  df-mdeg 26032  df-deg1 26033  df-mon1 26111  df-uc1p 26112  df-q1p 26113  df-r1p 26114  df-log 26535  df-logb 26742  df-primroots 41695
This theorem is referenced by:  aks6d1c6lem5  41780
  Copyright terms: Public domain W3C validator