Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem4 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem4 42214
Description: Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf Add hypothesis on coprimality, lift function to the integers so that group operations may be applied. Inline definition. (Contributed by metakunt, 14-May-2025.)
Hypotheses
Ref Expression
aks6d1c6lem4.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6lem4.2 𝑃 = (chr‘𝐾)
aks6d1c6lem4.3 (𝜑𝐾 ∈ Field)
aks6d1c6lem4.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6lem4.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6lem4.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6lem4.7 (𝜑𝑃𝑁)
aks6d1c6lem4.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6lem4.9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
aks6d1c6lem4.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6lem4.11 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aksaks6dlem4.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6lem4.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6lem4.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6lem4.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6lem4.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6lem4.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6lem4.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6lem4.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem4.20 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
aks6d1c6lem4.21 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
aks6d1c6lem4.22 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
Assertion
Ref Expression
aks6d1c6lem4 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Distinct variable groups:   ,𝑎   𝑃,𝑘,𝑙,𝑠   𝜑,   𝑁,𝑠   𝜑,𝑘,𝑙   ,𝐾   𝑦,𝑘,𝑙,𝜑   𝑔,𝐾,𝑥   𝑒,𝐾,𝑓   𝑚,𝐾,𝑛   𝑘,𝑁,𝑙,𝑥   𝑥,𝑅   𝑃,𝑗   𝑒,𝑁,𝑓   𝑆,𝑠,𝑡   𝑃,𝑒,𝑓   𝑗,𝑁   𝑅,𝑒,𝑓,𝑦   𝑗,𝐾   𝑦,𝑀   𝑁,𝑎   ,𝑀,𝑗   𝑥,𝑃   𝑆,,𝑗   𝜑,𝑗   𝑈,𝑗   𝑆,𝑎   𝑆,𝑔,𝑖,𝑥,𝑦   𝜑,𝑔,𝑖,𝑥   𝜑,𝑠,𝑡   𝜑,𝑎   𝑃,𝑏   𝑁,𝑏   𝐾,𝑎   𝑖,𝐾,𝑡,𝑦,𝑥   𝐷,𝑠   ,𝐺   𝑡,𝐺   𝑔,𝐺,𝑖,𝑦   𝐻,𝑠,𝑡   ,𝐻,𝑗   𝑥,𝐸   𝑒,𝐸,𝑓,𝑦   𝑗,𝐸   𝑔,𝐻,𝑖,𝑥,𝑦   𝐴,𝑎   𝑒,𝐺,𝑓   𝐴,𝑏   𝐻,𝑎   𝐴,𝑔,𝑖,𝑥   𝐴,,𝑗   𝐴,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑚,𝑛,𝑏)   𝐴(𝑦,𝑒,𝑓,𝑘,𝑚,𝑛,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑎,𝑏,𝑙)   𝑃(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛,𝑎)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏,𝑙)   𝑅(𝑡,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑆(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝑈(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐸(𝑡,𝑔,,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐺(𝑥,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐻(𝑒,𝑓,𝑘,𝑚,𝑛,𝑏,𝑙)   𝐽(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝐾(𝑘,𝑠,𝑏,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑗,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑀(𝑥,𝑡,𝑒,𝑓,𝑔,𝑖,𝑘,𝑚,𝑛,𝑠,𝑎,𝑏,𝑙)   𝑁(𝑦,𝑡,𝑔,,𝑖,𝑚,𝑛)

Proof of Theorem aks6d1c6lem4
Dummy variables 𝑣 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks6d1c6lem4.1 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
2 aks6d1c6lem4.2 . 2 𝑃 = (chr‘𝐾)
3 aks6d1c6lem4.3 . 2 (𝜑𝐾 ∈ Field)
4 aks6d1c6lem4.4 . 2 (𝜑𝑃 ∈ ℙ)
5 aks6d1c6lem4.5 . 2 (𝜑𝑅 ∈ ℕ)
6 aks6d1c6lem4.6 . 2 (𝜑𝑁 ∈ ℕ)
7 aks6d1c6lem4.7 . 2 (𝜑𝑃𝑁)
8 aks6d1c6lem4.8 . 2 (𝜑 → (𝑁 gcd 𝑅) = 1)
9 simpr 484 . . 3 ((𝜑𝐴 < 𝑃) → 𝐴 < 𝑃)
10 prmnn 16585 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
114, 10syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
1211nnred 12140 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
13 aks6d1c6lem4.11 . . . . . . . . 9 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
145phicld 16683 . . . . . . . . . . . . . . 15 (𝜑 → (ϕ‘𝑅) ∈ ℕ)
1514nnred 12140 . . . . . . . . . . . . . 14 (𝜑 → (ϕ‘𝑅) ∈ ℝ)
1614nnnn0d 12442 . . . . . . . . . . . . . . 15 (𝜑 → (ϕ‘𝑅) ∈ ℕ0)
1716nn0ge0d 12445 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (ϕ‘𝑅))
1815, 17resqrtcld 15325 . . . . . . . . . . . . 13 (𝜑 → (√‘(ϕ‘𝑅)) ∈ ℝ)
19 2re 12199 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
21 2pos 12228 . . . . . . . . . . . . . . 15 0 < 2
2221a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
236nnred 12140 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
246nngt0d 12174 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
25 1red 11113 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
26 1lt2 12291 . . . . . . . . . . . . . . . . 17 1 < 2
2726a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
2825, 27ltned 11249 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
2928necomd 2983 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
3020, 22, 23, 24, 29relogbcld 42014 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
3118, 30remulcld 11142 . . . . . . . . . . . 12 (𝜑 → ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ)
3231flcld 13702 . . . . . . . . . . 11 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ)
3315, 17sqrtge0d 15328 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (√‘(ϕ‘𝑅)))
3420recnd 11140 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℂ)
3522gt0ne0d 11681 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 0)
36 logb1 26706 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
3734, 35, 29, 36syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 1) = 0)
3837eqcomd 2737 . . . . . . . . . . . . . 14 (𝜑 → 0 = (2 logb 1))
39 2z 12504 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
4039a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℤ)
4120leidd 11683 . . . . . . . . . . . . . . 15 (𝜑 → 2 ≤ 2)
42 0lt1 11639 . . . . . . . . . . . . . . . 16 0 < 1
4342a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 1)
446nnge1d 12173 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑁)
4540, 41, 25, 43, 23, 24, 44logblebd 42017 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 1) ≤ (2 logb 𝑁))
4638, 45eqbrtrd 5111 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (2 logb 𝑁))
4718, 30, 33, 46mulge0d 11694 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
48 0zd 12480 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
49 flge 13709 . . . . . . . . . . . . 13 ((((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5031, 48, 49syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (0 ≤ ((√‘(ϕ‘𝑅)) · (2 logb 𝑁)) ↔ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5147, 50mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))))
5232, 51jca 511 . . . . . . . . . 10 (𝜑 → ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
53 elnn0z 12481 . . . . . . . . . 10 ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0 ↔ ((⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℤ ∧ 0 ≤ (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))))
5452, 53sylibr 234 . . . . . . . . 9 (𝜑 → (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) ∈ ℕ0)
5513, 54eqeltrid 2835 . . . . . . . 8 (𝜑𝐴 ∈ ℕ0)
5655nn0red 12443 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5712, 56lenltd 11259 . . . . . 6 (𝜑 → (𝑃𝐴 ↔ ¬ 𝐴 < 𝑃))
5857biimpar 477 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → 𝑃𝐴)
59 oveq1 7353 . . . . . . . . 9 (𝑏 = 𝑃 → (𝑏 gcd 𝑁) = (𝑃 gcd 𝑁))
6059eqeq1d 2733 . . . . . . . 8 (𝑏 = 𝑃 → ((𝑏 gcd 𝑁) = 1 ↔ (𝑃 gcd 𝑁) = 1))
61 aks6d1c6lem4.9 . . . . . . . . 9 (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
6261adantr 480 . . . . . . . 8 ((𝜑𝑃𝐴) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)
63 1zzd 12503 . . . . . . . . 9 ((𝜑𝑃𝐴) → 1 ∈ ℤ)
6413, 32eqeltrid 2835 . . . . . . . . . 10 (𝜑𝐴 ∈ ℤ)
6564adantr 480 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝐴 ∈ ℤ)
6611nnzd 12495 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6766adantr 480 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝑃 ∈ ℤ)
6811nnge1d 12173 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑃)
6968adantr 480 . . . . . . . . 9 ((𝜑𝑃𝐴) → 1 ≤ 𝑃)
70 simpr 484 . . . . . . . . 9 ((𝜑𝑃𝐴) → 𝑃𝐴)
7163, 65, 67, 69, 70elfzd 13415 . . . . . . . 8 ((𝜑𝑃𝐴) → 𝑃 ∈ (1...𝐴))
7260, 62, 71rspcdva 3573 . . . . . . 7 ((𝜑𝑃𝐴) → (𝑃 gcd 𝑁) = 1)
7372ex 412 . . . . . 6 (𝜑 → (𝑃𝐴 → (𝑃 gcd 𝑁) = 1))
7473adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃𝐴 → (𝑃 gcd 𝑁) = 1))
7558, 74mpd 15 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃 gcd 𝑁) = 1)
766nnzd 12495 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
77 coprm 16622 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
784, 76, 77syl2anc 584 . . . . . . . . . . 11 (𝜑 → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
7978con1bid 355 . . . . . . . . . 10 (𝜑 → (¬ (𝑃 gcd 𝑁) = 1 ↔ 𝑃𝑁))
8079bicomd 223 . . . . . . . . 9 (𝜑 → (𝑃𝑁 ↔ ¬ (𝑃 gcd 𝑁) = 1))
8180biimpd 229 . . . . . . . 8 (𝜑 → (𝑃𝑁 → ¬ (𝑃 gcd 𝑁) = 1))
827, 81mpd 15 . . . . . . 7 (𝜑 → ¬ (𝑃 gcd 𝑁) = 1)
8382neqned 2935 . . . . . 6 (𝜑 → (𝑃 gcd 𝑁) ≠ 1)
8483adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → (𝑃 gcd 𝑁) ≠ 1)
8584neneqd 2933 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → ¬ (𝑃 gcd 𝑁) = 1)
8675, 85pm2.21dd 195 . . 3 ((𝜑 ∧ ¬ 𝐴 < 𝑃) → 𝐴 < 𝑃)
879, 86pm2.61dan 812 . 2 (𝜑𝐴 < 𝑃)
88 aks6d1c6lem4.10 . 2 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
89 aksaks6dlem4.12 . 2 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
90 aks6d1c6lem4.13 . 2 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
91 aks6d1c6lem4.14 . 2 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
92 aks6d1c6lem4.15 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
93 aks6d1c6lem4.16 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
94 aks6d1c6lem4.17 . 2 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
95 aks6d1c6lem4.18 . 2 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
96 aks6d1c6lem4.19 . 2 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
97 eqid 2731 . 2 (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))
98 aks6d1c6lem4.21 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))
99 imaco 6198 . . . . . 6 ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))
10099eqcomi 2740 . . . . 5 (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝐽𝐸) “ (ℕ0 × ℕ0))
101 resima 5963 . . . . . . . 8 (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)) = ((𝐽𝐸) “ (ℕ0 × ℕ0))
102101eqcomi 2740 . . . . . . 7 ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0))
103102a1i 11 . . . . . 6 (𝜑 → ((𝐽𝐸) “ (ℕ0 × ℕ0)) = (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)))
10466adantr 480 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℤ)
105 xp1st 7953 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) → (1st𝑣) ∈ ℕ0)
106105adantl 481 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (1st𝑣) ∈ ℕ0)
107104, 106zexpcld 13994 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st𝑣)) ∈ ℤ)
10811nnne0d 12175 . . . . . . . . . . . . . . 15 (𝜑𝑃 ≠ 0)
109 dvdsval2 16166 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
11066, 108, 76, 109syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
1117, 110mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
112111adantr 480 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℤ)
113 xp2nd 7954 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) → (2nd𝑣) ∈ ℕ0)
114113adantl 481 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (2nd𝑣) ∈ ℕ0)
115112, 114zexpcld 13994 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd𝑣)) ∈ ℤ)
116107, 115zmulcld 12583 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) ∈ ℤ)
117 vex 3440 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
118 vex 3440 . . . . . . . . . . . . . . . 16 𝑙 ∈ V
119117, 118op1std 7931 . . . . . . . . . . . . . . 15 (𝑣 = ⟨𝑘, 𝑙⟩ → (1st𝑣) = 𝑘)
120119oveq2d 7362 . . . . . . . . . . . . . 14 (𝑣 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑣)) = (𝑃𝑘))
121117, 118op2ndd 7932 . . . . . . . . . . . . . . 15 (𝑣 = ⟨𝑘, 𝑙⟩ → (2nd𝑣) = 𝑙)
122121oveq2d 7362 . . . . . . . . . . . . . 14 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑣)) = ((𝑁 / 𝑃)↑𝑙))
123120, 122oveq12d 7364 . . . . . . . . . . . . 13 (𝑣 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
124123mpompt 7460 . . . . . . . . . . . 12 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
12589, 124eqtr4i 2757 . . . . . . . . . . 11 𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
126125a1i 11 . . . . . . . . . 10 (𝜑𝐸 = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))))
127 aks6d1c6lem4.20 . . . . . . . . . . 11 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
128127a1i 11 . . . . . . . . . 10 (𝜑𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
129 oveq1 7353 . . . . . . . . . 10 (𝑗 = ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))) → (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
130116, 126, 128, 129fmptco 7062 . . . . . . . . 9 (𝜑 → (𝐽𝐸) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
131130reseq1d 5926 . . . . . . . 8 (𝜑 → ((𝐽𝐸) ↾ (ℕ0 × ℕ0)) = ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)))
132 ssidd 3953 . . . . . . . . . 10 (𝜑 → (ℕ0 × ℕ0) ⊆ (ℕ0 × ℕ0))
133132resmptd 5988 . . . . . . . . 9 (𝜑 → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
134126, 116fvmpt2d 6942 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → (𝐸𝑣) = ((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣))))
135134oveq1d 7361 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
136135mpteq2dva 5182 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
137136eqcomd 2737 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
138 ovexd 7381 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
139 eqid 2731 . . . . . . . . . . . . 13 (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
140138, 139fmptd 7047 . . . . . . . . . . . 12 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)):(ℕ0 × ℕ0)⟶V)
141 ffn 6651 . . . . . . . . . . . 12 ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)):(ℕ0 × ℕ0)⟶V → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) Fn (ℕ0 × ℕ0))
142140, 141syl 17 . . . . . . . . . . 11 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) Fn (ℕ0 × ℕ0))
143 ovexd 7381 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
144143, 97fmptd 7047 . . . . . . . . . . . 12 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)):(ℕ0 × ℕ0)⟶V)
145 ffn 6651 . . . . . . . . . . . 12 ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)):(ℕ0 × ℕ0)⟶V → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) Fn (ℕ0 × ℕ0))
146144, 145syl 17 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) Fn (ℕ0 × ℕ0))
147 eqidd 2732 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)))
148 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → 𝑣 = 𝑐)
149148fveq2d 6826 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → (𝐸𝑣) = (𝐸𝑐))
150149oveq1d 7361 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑣 = 𝑐) → ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
151 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑐 ∈ (ℕ0 × ℕ0))
152 ovexd 7381 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) ∈ V)
153147, 150, 151, 152fvmptd 6936 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))‘𝑐) = ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))
154 eqid 2731 . . . . . . . . . . . . 13 ((mulGrp‘𝐾) ↾s 𝑈) = ((mulGrp‘𝐾) ↾s 𝑈)
155 aks6d1c6lem4.22 . . . . . . . . . . . . . . . 16 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}
156155ssrab3 4029 . . . . . . . . . . . . . . 15 𝑈 ⊆ (Base‘(mulGrp‘𝐾))
157156a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘(mulGrp‘𝐾)))
158157adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑈 ⊆ (Base‘(mulGrp‘𝐾)))
1593fldcrngd 20657 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ CRing)
160 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (mulGrp‘𝐾) = (mulGrp‘𝐾)
161160crngmgp 20159 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ CRing → (mulGrp‘𝐾) ∈ CMnd)
162159, 161syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (mulGrp‘𝐾) ∈ CMnd)
163162, 5, 155primrootsunit 42139 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ∧ ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel))
164163simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) = (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
16593, 164eleqtrd 2833 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅))
166163simprd 495 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel)
167 ablcmn 19699 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝐾) ↾s 𝑈) ∈ Abel → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
168166, 167syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((mulGrp‘𝐾) ↾s 𝑈) ∈ CMnd)
1695nnnn0d 12442 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ∈ ℕ0)
170 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (.g‘((mulGrp‘𝐾) ↾s 𝑈)) = (.g‘((mulGrp‘𝐾) ↾s 𝑈))
171168, 169, 170isprimroot 42134 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤))))
172171biimpd 229 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 ∈ (((mulGrp‘𝐾) ↾s 𝑈) PrimRoots 𝑅) → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤))))
173165, 172mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ (𝑅(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) ∧ ∀𝑤 ∈ ℕ0 ((𝑤(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = (0g‘((mulGrp‘𝐾) ↾s 𝑈)) → 𝑅𝑤)))
174173simp1d 1142 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
175 eqid 2731 . . . . . . . . . . . . . . . . 17 (Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾))
176154, 175ressbas2 17149 . . . . . . . . . . . . . . . 16 (𝑈 ⊆ (Base‘(mulGrp‘𝐾)) → 𝑈 = (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
177157, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘((mulGrp‘𝐾) ↾s 𝑈)))
178174, 177eleqtrrd 2834 . . . . . . . . . . . . . 14 (𝜑𝑀𝑈)
179178adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → 𝑀𝑈)
1806, 4, 7, 89aks6d1c2p1 42159 . . . . . . . . . . . . . 14 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
181180ffvelcdmda 7017 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝐸𝑐) ∈ ℕ)
182154, 158, 179, 181ressmulgnnd 18991 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
183 eqidd 2732 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
184 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → 𝑗 = 𝑐)
185184fveq2d 6826 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → (𝐸𝑗) = (𝐸𝑐))
186185oveq1d 7361 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (ℕ0 × ℕ0)) ∧ 𝑗 = 𝑐) → ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
187 ovexd 7381 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀) ∈ V)
188183, 186, 151, 187fvmptd 6936 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐) = ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀))
189188eqcomd 2737 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝐸𝑐)(.g‘(mulGrp‘𝐾))𝑀) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐))
190153, 182, 1893eqtrd 2770 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (ℕ0 × ℕ0)) → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))‘𝑐) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))‘𝑐))
191142, 146, 190eqfnfvd 6967 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑣)(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
192137, 191eqtrd 2766 . . . . . . . . 9 (𝜑 → (𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
193133, 192eqtrd 2766 . . . . . . . 8 (𝜑 → ((𝑣 ∈ (ℕ0 × ℕ0) ↦ (((𝑃↑(1st𝑣)) · ((𝑁 / 𝑃)↑(2nd𝑣)))(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) ↾ (ℕ0 × ℕ0)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
194131, 193eqtrd 2766 . . . . . . 7 (𝜑 → ((𝐽𝐸) ↾ (ℕ0 × ℕ0)) = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)))
195194imaeq1d 6007 . . . . . 6 (𝜑 → (((𝐽𝐸) ↾ (ℕ0 × ℕ0)) “ (ℕ0 × ℕ0)) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
196103, 195eqtrd 2766 . . . . 5 (𝜑 → ((𝐽𝐸) “ (ℕ0 × ℕ0)) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
197100, 196eqtrid 2778 . . . 4 (𝜑 → (𝐽 “ (𝐸 “ (ℕ0 × ℕ0))) = ((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0)))
198197fveq2d 6826 . . 3 (𝜑 → (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))) = (♯‘((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0))))
19998, 198breqtrd 5115 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘((𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀)) “ (ℕ0 × ℕ0))))
2001, 2, 3, 4, 5, 6, 7, 8, 87, 88, 55, 89, 90, 91, 92, 93, 94, 95, 96, 97, 199aks6d1c6lem3 42213 1 (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  cop 4579   class class class wbr 5089  {copab 5151  cmpt 5170   × cxp 5612  cres 5616  cima 5617  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  m cmap 8750  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  cz 12468  ...cfz 13407  cfl 13694  cexp 13968  Ccbc 14209  chash 14237  csqrt 15140  Σcsu 15593  cdvds 16163   gcd cgcd 16405  cprime 16582  ϕcphi 16675  Basecbs 17120  s cress 17141  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  .gcmg 18980  CMndccmn 19692  Abelcabl 19693  mulGrpcmgp 20058  CRingccrg 20152   RingIso crs 20388  Fieldcfield 20645  ℤRHomczrh 21436  chrcchr 21438  ℤ/nczn 21439  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089  eval1ce1 22229   logb clogb 26701   PrimRoots cprimroots 42132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-pws 17353  df-xrs 17406  df-qtop 17411  df-imas 17412  df-qus 17413  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-cntz 19229  df-od 19440  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-rim 20391  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-chr 21442  df-zn 21443  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evl1 22231  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-mdeg 25987  df-deg1 25988  df-mon1 26063  df-uc1p 26064  df-q1p 26065  df-r1p 26066  df-log 26492  df-logb 26702  df-primroots 42133
This theorem is referenced by:  aks6d1c6lem5  42218
  Copyright terms: Public domain W3C validator