MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foimacnv Structured version   Visualization version   GIF version

Theorem foimacnv 6781
Description: A reverse version of f1imacnv 6780. (Contributed by Jeff Hankins, 16-Jul-2009.)
Assertion
Ref Expression
foimacnv ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)

Proof of Theorem foimacnv
StepHypRef Expression
1 resima 5966 . 2 ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = (𝐹 “ (𝐹𝐶))
2 fofun 6737 . . . . . 6 (𝐹:𝐴onto𝐵 → Fun 𝐹)
32adantr 480 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → Fun 𝐹)
4 funcnvres2 6562 . . . . 5 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
53, 4syl 17 . . . 4 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
65imaeq1d 6010 . . 3 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹𝐶) “ (𝐹𝐶)) = ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)))
7 resss 5952 . . . . . . . . . 10 (𝐹𝐶) ⊆ 𝐹
8 cnvss 5815 . . . . . . . . . 10 ((𝐹𝐶) ⊆ 𝐹(𝐹𝐶) ⊆ 𝐹)
97, 8ax-mp 5 . . . . . . . . 9 (𝐹𝐶) ⊆ 𝐹
10 cnvcnvss 6143 . . . . . . . . 9 𝐹𝐹
119, 10sstri 3945 . . . . . . . 8 (𝐹𝐶) ⊆ 𝐹
12 funss 6501 . . . . . . . 8 ((𝐹𝐶) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐶)))
1311, 2, 12mpsyl 68 . . . . . . 7 (𝐹:𝐴onto𝐵 → Fun (𝐹𝐶))
1413adantr 480 . . . . . 6 ((𝐹:𝐴onto𝐵𝐶𝐵) → Fun (𝐹𝐶))
15 df-ima 5632 . . . . . . 7 (𝐹𝐶) = ran (𝐹𝐶)
16 df-rn 5630 . . . . . . 7 ran (𝐹𝐶) = dom (𝐹𝐶)
1715, 16eqtr2i 2753 . . . . . 6 dom (𝐹𝐶) = (𝐹𝐶)
18 df-fn 6485 . . . . . 6 ((𝐹𝐶) Fn (𝐹𝐶) ↔ (Fun (𝐹𝐶) ∧ dom (𝐹𝐶) = (𝐹𝐶)))
1914, 17, 18sylanblrc 590 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶) Fn (𝐹𝐶))
20 dfdm4 5838 . . . . . 6 dom (𝐹𝐶) = ran (𝐹𝐶)
21 forn 6739 . . . . . . . . . 10 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
2221sseq2d 3968 . . . . . . . . 9 (𝐹:𝐴onto𝐵 → (𝐶 ⊆ ran 𝐹𝐶𝐵))
2322biimpar 477 . . . . . . . 8 ((𝐹:𝐴onto𝐵𝐶𝐵) → 𝐶 ⊆ ran 𝐹)
24 df-rn 5630 . . . . . . . 8 ran 𝐹 = dom 𝐹
2523, 24sseqtrdi 3976 . . . . . . 7 ((𝐹:𝐴onto𝐵𝐶𝐵) → 𝐶 ⊆ dom 𝐹)
26 ssdmres 5964 . . . . . . 7 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
2725, 26sylib 218 . . . . . 6 ((𝐹:𝐴onto𝐵𝐶𝐵) → dom (𝐹𝐶) = 𝐶)
2820, 27eqtr3id 2778 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → ran (𝐹𝐶) = 𝐶)
29 df-fo 6488 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 ↔ ((𝐹𝐶) Fn (𝐹𝐶) ∧ ran (𝐹𝐶) = 𝐶))
3019, 28, 29sylanbrc 583 . . . 4 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶):(𝐹𝐶)–onto𝐶)
31 foima 6741 . . . 4 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
3230, 31syl 17 . . 3 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
336, 32eqtr3d 2766 . 2 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = 𝐶)
341, 33eqtr3id 2778 1 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wss 3903  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6476   Fn wfn 6477  ontowfo 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488
This theorem is referenced by:  f1opw2  7604  mptcnfimad  7921  imacosupp  8142  fopwdom  9002  f1opwfi  9246  enfin2i  10215  fin1a2lem7  10300  fsumss  15632  fprodss  15855  gicsubgen  19158  coe1mul2lem2  22152  cncmp  23277  cnconn  23307  qtoprest  23602  qtopomap  23603  qtopcmap  23604  hmeoimaf1o  23655  elfm3  23835  imasf1oxms  24375  mbfimaopnlem  25554  cvmsss2  35257  diaintclN  41047  dibintclN  41156  dihintcl  41333  lnmepi  43068  pwfi2f1o  43079  sge0f1o  46373  isubgr3stgrlem8  47967
  Copyright terms: Public domain W3C validator