MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foimacnv Structured version   Visualization version   GIF version

Theorem foimacnv 6817
Description: A reverse version of f1imacnv 6816. (Contributed by Jeff Hankins, 16-Jul-2009.)
Assertion
Ref Expression
foimacnv ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)

Proof of Theorem foimacnv
StepHypRef Expression
1 resima 5986 . 2 ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = (𝐹 “ (𝐹𝐶))
2 fofun 6773 . . . . . 6 (𝐹:𝐴onto𝐵 → Fun 𝐹)
32adantr 480 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → Fun 𝐹)
4 funcnvres2 6596 . . . . 5 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
53, 4syl 17 . . . 4 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
65imaeq1d 6030 . . 3 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹𝐶) “ (𝐹𝐶)) = ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)))
7 resss 5972 . . . . . . . . . 10 (𝐹𝐶) ⊆ 𝐹
8 cnvss 5836 . . . . . . . . . 10 ((𝐹𝐶) ⊆ 𝐹(𝐹𝐶) ⊆ 𝐹)
97, 8ax-mp 5 . . . . . . . . 9 (𝐹𝐶) ⊆ 𝐹
10 cnvcnvss 6167 . . . . . . . . 9 𝐹𝐹
119, 10sstri 3956 . . . . . . . 8 (𝐹𝐶) ⊆ 𝐹
12 funss 6535 . . . . . . . 8 ((𝐹𝐶) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐶)))
1311, 2, 12mpsyl 68 . . . . . . 7 (𝐹:𝐴onto𝐵 → Fun (𝐹𝐶))
1413adantr 480 . . . . . 6 ((𝐹:𝐴onto𝐵𝐶𝐵) → Fun (𝐹𝐶))
15 df-ima 5651 . . . . . . 7 (𝐹𝐶) = ran (𝐹𝐶)
16 df-rn 5649 . . . . . . 7 ran (𝐹𝐶) = dom (𝐹𝐶)
1715, 16eqtr2i 2753 . . . . . 6 dom (𝐹𝐶) = (𝐹𝐶)
18 df-fn 6514 . . . . . 6 ((𝐹𝐶) Fn (𝐹𝐶) ↔ (Fun (𝐹𝐶) ∧ dom (𝐹𝐶) = (𝐹𝐶)))
1914, 17, 18sylanblrc 590 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶) Fn (𝐹𝐶))
20 dfdm4 5859 . . . . . 6 dom (𝐹𝐶) = ran (𝐹𝐶)
21 forn 6775 . . . . . . . . . 10 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
2221sseq2d 3979 . . . . . . . . 9 (𝐹:𝐴onto𝐵 → (𝐶 ⊆ ran 𝐹𝐶𝐵))
2322biimpar 477 . . . . . . . 8 ((𝐹:𝐴onto𝐵𝐶𝐵) → 𝐶 ⊆ ran 𝐹)
24 df-rn 5649 . . . . . . . 8 ran 𝐹 = dom 𝐹
2523, 24sseqtrdi 3987 . . . . . . 7 ((𝐹:𝐴onto𝐵𝐶𝐵) → 𝐶 ⊆ dom 𝐹)
26 ssdmres 5984 . . . . . . 7 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
2725, 26sylib 218 . . . . . 6 ((𝐹:𝐴onto𝐵𝐶𝐵) → dom (𝐹𝐶) = 𝐶)
2820, 27eqtr3id 2778 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → ran (𝐹𝐶) = 𝐶)
29 df-fo 6517 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 ↔ ((𝐹𝐶) Fn (𝐹𝐶) ∧ ran (𝐹𝐶) = 𝐶))
3019, 28, 29sylanbrc 583 . . . 4 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶):(𝐹𝐶)–onto𝐶)
31 foima 6777 . . . 4 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
3230, 31syl 17 . . 3 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
336, 32eqtr3d 2766 . 2 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = 𝐶)
341, 33eqtr3id 2778 1 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wss 3914  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505   Fn wfn 6506  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517
This theorem is referenced by:  f1opw2  7644  mptcnfimad  7965  imacosupp  8188  fopwdom  9049  f1opwfi  9307  enfin2i  10274  fin1a2lem7  10359  fsumss  15691  fprodss  15914  gicsubgen  19211  coe1mul2lem2  22154  cncmp  23279  cnconn  23309  qtoprest  23604  qtopomap  23605  qtopcmap  23606  hmeoimaf1o  23657  elfm3  23837  imasf1oxms  24377  mbfimaopnlem  25556  cvmsss2  35261  diaintclN  41052  dibintclN  41161  dihintcl  41338  lnmepi  43074  pwfi2f1o  43085  sge0f1o  46380  isubgr3stgrlem8  47972
  Copyright terms: Public domain W3C validator