MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foimacnv Structured version   Visualization version   GIF version

Theorem foimacnv 6879
Description: A reverse version of f1imacnv 6878. (Contributed by Jeff Hankins, 16-Jul-2009.)
Assertion
Ref Expression
foimacnv ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)

Proof of Theorem foimacnv
StepHypRef Expression
1 resima 6044 . 2 ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = (𝐹 “ (𝐹𝐶))
2 fofun 6835 . . . . . 6 (𝐹:𝐴onto𝐵 → Fun 𝐹)
32adantr 480 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → Fun 𝐹)
4 funcnvres2 6658 . . . . 5 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
53, 4syl 17 . . . 4 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
65imaeq1d 6088 . . 3 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹𝐶) “ (𝐹𝐶)) = ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)))
7 resss 6031 . . . . . . . . . 10 (𝐹𝐶) ⊆ 𝐹
8 cnvss 5897 . . . . . . . . . 10 ((𝐹𝐶) ⊆ 𝐹(𝐹𝐶) ⊆ 𝐹)
97, 8ax-mp 5 . . . . . . . . 9 (𝐹𝐶) ⊆ 𝐹
10 cnvcnvss 6225 . . . . . . . . 9 𝐹𝐹
119, 10sstri 4018 . . . . . . . 8 (𝐹𝐶) ⊆ 𝐹
12 funss 6597 . . . . . . . 8 ((𝐹𝐶) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐶)))
1311, 2, 12mpsyl 68 . . . . . . 7 (𝐹:𝐴onto𝐵 → Fun (𝐹𝐶))
1413adantr 480 . . . . . 6 ((𝐹:𝐴onto𝐵𝐶𝐵) → Fun (𝐹𝐶))
15 df-ima 5713 . . . . . . 7 (𝐹𝐶) = ran (𝐹𝐶)
16 df-rn 5711 . . . . . . 7 ran (𝐹𝐶) = dom (𝐹𝐶)
1715, 16eqtr2i 2769 . . . . . 6 dom (𝐹𝐶) = (𝐹𝐶)
18 df-fn 6576 . . . . . 6 ((𝐹𝐶) Fn (𝐹𝐶) ↔ (Fun (𝐹𝐶) ∧ dom (𝐹𝐶) = (𝐹𝐶)))
1914, 17, 18sylanblrc 589 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶) Fn (𝐹𝐶))
20 dfdm4 5920 . . . . . 6 dom (𝐹𝐶) = ran (𝐹𝐶)
21 forn 6837 . . . . . . . . . 10 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
2221sseq2d 4041 . . . . . . . . 9 (𝐹:𝐴onto𝐵 → (𝐶 ⊆ ran 𝐹𝐶𝐵))
2322biimpar 477 . . . . . . . 8 ((𝐹:𝐴onto𝐵𝐶𝐵) → 𝐶 ⊆ ran 𝐹)
24 df-rn 5711 . . . . . . . 8 ran 𝐹 = dom 𝐹
2523, 24sseqtrdi 4059 . . . . . . 7 ((𝐹:𝐴onto𝐵𝐶𝐵) → 𝐶 ⊆ dom 𝐹)
26 ssdmres 6042 . . . . . . 7 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
2725, 26sylib 218 . . . . . 6 ((𝐹:𝐴onto𝐵𝐶𝐵) → dom (𝐹𝐶) = 𝐶)
2820, 27eqtr3id 2794 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → ran (𝐹𝐶) = 𝐶)
29 df-fo 6579 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 ↔ ((𝐹𝐶) Fn (𝐹𝐶) ∧ ran (𝐹𝐶) = 𝐶))
3019, 28, 29sylanbrc 582 . . . 4 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶):(𝐹𝐶)–onto𝐶)
31 foima 6839 . . . 4 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
3230, 31syl 17 . . 3 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
336, 32eqtr3d 2782 . 2 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = 𝐶)
341, 33eqtr3id 2794 1 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  ontowfo 6571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579
This theorem is referenced by:  f1opw2  7705  mptcnfimad  8027  imacosupp  8250  fopwdom  9146  f1opwfi  9426  enfin2i  10390  fin1a2lem7  10475  fsumss  15773  fprodss  15996  gicsubgen  19319  coe1mul2lem2  22292  cncmp  23421  cnconn  23451  qtoprest  23746  qtopomap  23747  qtopcmap  23748  hmeoimaf1o  23799  elfm3  23979  imasf1oxms  24523  mbfimaopnlem  25709  cvmsss2  35242  diaintclN  41015  dibintclN  41124  dihintcl  41301  lnmepi  43042  pwfi2f1o  43053  sge0f1o  46303
  Copyright terms: Public domain W3C validator