MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foimacnv Structured version   Visualization version   GIF version

Theorem foimacnv 6731
Description: A reverse version of f1imacnv 6730. (Contributed by Jeff Hankins, 16-Jul-2009.)
Assertion
Ref Expression
foimacnv ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)

Proof of Theorem foimacnv
StepHypRef Expression
1 resima 5924 . 2 ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = (𝐹 “ (𝐹𝐶))
2 fofun 6687 . . . . . 6 (𝐹:𝐴onto𝐵 → Fun 𝐹)
32adantr 481 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → Fun 𝐹)
4 funcnvres2 6512 . . . . 5 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
53, 4syl 17 . . . 4 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
65imaeq1d 5967 . . 3 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹𝐶) “ (𝐹𝐶)) = ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)))
7 resss 5915 . . . . . . . . . 10 (𝐹𝐶) ⊆ 𝐹
8 cnvss 5780 . . . . . . . . . 10 ((𝐹𝐶) ⊆ 𝐹(𝐹𝐶) ⊆ 𝐹)
97, 8ax-mp 5 . . . . . . . . 9 (𝐹𝐶) ⊆ 𝐹
10 cnvcnvss 6096 . . . . . . . . 9 𝐹𝐹
119, 10sstri 3935 . . . . . . . 8 (𝐹𝐶) ⊆ 𝐹
12 funss 6451 . . . . . . . 8 ((𝐹𝐶) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐶)))
1311, 2, 12mpsyl 68 . . . . . . 7 (𝐹:𝐴onto𝐵 → Fun (𝐹𝐶))
1413adantr 481 . . . . . 6 ((𝐹:𝐴onto𝐵𝐶𝐵) → Fun (𝐹𝐶))
15 df-ima 5603 . . . . . . 7 (𝐹𝐶) = ran (𝐹𝐶)
16 df-rn 5601 . . . . . . 7 ran (𝐹𝐶) = dom (𝐹𝐶)
1715, 16eqtr2i 2769 . . . . . 6 dom (𝐹𝐶) = (𝐹𝐶)
18 df-fn 6435 . . . . . 6 ((𝐹𝐶) Fn (𝐹𝐶) ↔ (Fun (𝐹𝐶) ∧ dom (𝐹𝐶) = (𝐹𝐶)))
1914, 17, 18sylanblrc 590 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶) Fn (𝐹𝐶))
20 dfdm4 5803 . . . . . 6 dom (𝐹𝐶) = ran (𝐹𝐶)
21 forn 6689 . . . . . . . . . 10 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
2221sseq2d 3958 . . . . . . . . 9 (𝐹:𝐴onto𝐵 → (𝐶 ⊆ ran 𝐹𝐶𝐵))
2322biimpar 478 . . . . . . . 8 ((𝐹:𝐴onto𝐵𝐶𝐵) → 𝐶 ⊆ ran 𝐹)
24 df-rn 5601 . . . . . . . 8 ran 𝐹 = dom 𝐹
2523, 24sseqtrdi 3976 . . . . . . 7 ((𝐹:𝐴onto𝐵𝐶𝐵) → 𝐶 ⊆ dom 𝐹)
26 ssdmres 5913 . . . . . . 7 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
2725, 26sylib 217 . . . . . 6 ((𝐹:𝐴onto𝐵𝐶𝐵) → dom (𝐹𝐶) = 𝐶)
2820, 27eqtr3id 2794 . . . . 5 ((𝐹:𝐴onto𝐵𝐶𝐵) → ran (𝐹𝐶) = 𝐶)
29 df-fo 6438 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 ↔ ((𝐹𝐶) Fn (𝐹𝐶) ∧ ran (𝐹𝐶) = 𝐶))
3019, 28, 29sylanbrc 583 . . . 4 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹𝐶):(𝐹𝐶)–onto𝐶)
31 foima 6691 . . . 4 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
3230, 31syl 17 . . 3 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
336, 32eqtr3d 2782 . 2 ((𝐹:𝐴onto𝐵𝐶𝐵) → ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = 𝐶)
341, 33eqtr3id 2794 1 ((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wss 3892  ccnv 5589  dom cdm 5590  ran crn 5591  cres 5592  cima 5593  Fun wfun 6426   Fn wfn 6427  ontowfo 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-fun 6434  df-fn 6435  df-f 6436  df-fo 6438
This theorem is referenced by:  f1opw2  7519  imacosupp  8017  fopwdom  8858  f1opwfi  9111  enfin2i  10088  fin1a2lem7  10173  fsumss  15448  fprodss  15669  gicsubgen  18905  coe1mul2lem2  21450  cncmp  22554  cnconn  22584  qtoprest  22879  qtopomap  22880  qtopcmap  22881  hmeoimaf1o  22932  elfm3  23112  imasf1oxms  23656  mbfimaopnlem  24830  cvmsss2  33245  diaintclN  39081  dibintclN  39190  dihintcl  39367  lnmepi  40919  pwfi2f1o  40930  sge0f1o  43902
  Copyright terms: Public domain W3C validator