MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imacnv Structured version   Visualization version   GIF version

Theorem f1imacnv 6622
Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.)
Assertion
Ref Expression
f1imacnv ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)

Proof of Theorem f1imacnv
StepHypRef Expression
1 resima 5874 . 2 ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = (𝐹 “ (𝐹𝐶))
2 df-f1 6348 . . . . . . 7 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
32simprbi 500 . . . . . 6 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
43adantr 484 . . . . 5 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun 𝐹)
5 funcnvres 6420 . . . . 5 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
64, 5syl 17 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
76imaeq1d 5915 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹𝐶) “ (𝐹𝐶)) = ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)))
8 f1ores 6620 . . . . 5 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
9 f1ocnv 6618 . . . . 5 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
108, 9syl 17 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
11 imadmrn 5926 . . . . 5 ((𝐹𝐶) “ dom (𝐹𝐶)) = ran (𝐹𝐶)
12 f1odm 6610 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → dom (𝐹𝐶) = (𝐹𝐶))
1312imaeq2d 5916 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ((𝐹𝐶) “ dom (𝐹𝐶)) = ((𝐹𝐶) “ (𝐹𝐶)))
14 f1ofo 6613 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶(𝐹𝐶):(𝐹𝐶)–onto𝐶)
15 forn 6584 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 → ran (𝐹𝐶) = 𝐶)
1614, 15syl 17 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ran (𝐹𝐶) = 𝐶)
1711, 13, 163eqtr3a 2883 . . . 4 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
1810, 17syl 17 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
197, 18eqtr3d 2861 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = 𝐶)
201, 19syl5eqr 2873 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wss 3919  ccnv 5541  dom cdm 5542  ran crn 5543  cres 5544  cima 5545  Fun wfun 6337  wf 6339  1-1wf1 6340  ontowfo 6341  1-1-ontowf1o 6342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350
This theorem is referenced by:  f1opw2  7394  ssenen  8688  f1opwfi  8825  isf34lem3  9795  subggim  18406  gicsubgen  18418  cnt1  21958  basqtop  22319  tgqtop  22320  hmeoopn  22374  hmeocld  22375  hmeontr  22377  qtopf1  22424  f1otrg  26668  tpr2rico  31212  eulerpartlemmf  31690  ballotlemscr  31833  ballotlemrinv0  31847  cvmlift2lem9a  32607  grpokerinj  35276  isomgrsym  44280
  Copyright terms: Public domain W3C validator