![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1imacnv | Structured version Visualization version GIF version |
Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.) |
Ref | Expression |
---|---|
f1imacnv | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resima 6015 | . 2 ⊢ ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶)) = (◡𝐹 “ (𝐹 “ 𝐶)) | |
2 | df-f1 6548 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
3 | 2 | simprbi 496 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → Fun ◡𝐹) |
5 | funcnvres 6626 | . . . . 5 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐶) = (◡𝐹 ↾ (𝐹 “ 𝐶))) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ◡(𝐹 ↾ 𝐶) = (◡𝐹 ↾ (𝐹 “ 𝐶))) |
7 | 6 | imaeq1d 6058 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶))) |
8 | f1ores 6847 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
9 | f1ocnv 6845 | . . . . 5 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶) |
11 | imadmrn 6069 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶) “ dom ◡(𝐹 ↾ 𝐶)) = ran ◡(𝐹 ↾ 𝐶) | |
12 | f1odm 6837 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → dom ◡(𝐹 ↾ 𝐶) = (𝐹 “ 𝐶)) | |
13 | 12 | imaeq2d 6059 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → (◡(𝐹 ↾ 𝐶) “ dom ◡(𝐹 ↾ 𝐶)) = (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶))) |
14 | f1ofo 6840 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–onto→𝐶) | |
15 | forn 6808 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–onto→𝐶 → ran ◡(𝐹 ↾ 𝐶) = 𝐶) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → ran ◡(𝐹 ↾ 𝐶) = 𝐶) |
17 | 11, 13, 16 | 3eqtr3a 2795 | . . . 4 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = 𝐶) |
18 | 10, 17 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = 𝐶) |
19 | 7, 18 | eqtr3d 2773 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶)) = 𝐶) |
20 | 1, 19 | eqtr3id 2785 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝐶)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3948 ◡ccnv 5675 dom cdm 5676 ran crn 5677 ↾ cres 5678 “ cima 5679 Fun wfun 6537 ⟶wf 6539 –1-1→wf1 6540 –onto→wfo 6541 –1-1-onto→wf1o 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 |
This theorem is referenced by: f1opw2 7665 ssenen 9155 f1opwfi 9360 isf34lem3 10374 subggim 19181 gicsubgen 19194 cnt1 23075 basqtop 23436 tgqtop 23437 hmeoopn 23491 hmeocld 23492 hmeontr 23494 qtopf1 23541 f1otrg 28390 tpr2rico 33191 eulerpartlemmf 33673 ballotlemscr 33816 ballotlemrinv0 33830 cvmlift2lem9a 34593 grpokerinj 37065 isomgrsym 46803 |
Copyright terms: Public domain | W3C validator |