| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1imacnv | Structured version Visualization version GIF version | ||
| Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.) |
| Ref | Expression |
|---|---|
| f1imacnv | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝐶)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resima 5986 | . 2 ⊢ ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶)) = (◡𝐹 “ (𝐹 “ 𝐶)) | |
| 2 | df-f1 6516 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 3 | 2 | simprbi 496 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → Fun ◡𝐹) |
| 5 | funcnvres 6594 | . . . . 5 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐶) = (◡𝐹 ↾ (𝐹 “ 𝐶))) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ◡(𝐹 ↾ 𝐶) = (◡𝐹 ↾ (𝐹 “ 𝐶))) |
| 7 | 6 | imaeq1d 6030 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶))) |
| 8 | f1ores 6814 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
| 9 | f1ocnv 6812 | . . . . 5 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶) |
| 11 | imadmrn 6041 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶) “ dom ◡(𝐹 ↾ 𝐶)) = ran ◡(𝐹 ↾ 𝐶) | |
| 12 | f1odm 6804 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → dom ◡(𝐹 ↾ 𝐶) = (𝐹 “ 𝐶)) | |
| 13 | 12 | imaeq2d 6031 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → (◡(𝐹 ↾ 𝐶) “ dom ◡(𝐹 ↾ 𝐶)) = (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶))) |
| 14 | f1ofo 6807 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–onto→𝐶) | |
| 15 | forn 6775 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–onto→𝐶 → ran ◡(𝐹 ↾ 𝐶) = 𝐶) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → ran ◡(𝐹 ↾ 𝐶) = 𝐶) |
| 17 | 11, 13, 16 | 3eqtr3a 2788 | . . . 4 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = 𝐶) |
| 18 | 10, 17 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = 𝐶) |
| 19 | 7, 18 | eqtr3d 2766 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶)) = 𝐶) |
| 20 | 1, 19 | eqtr3id 2778 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝐶)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ↾ cres 5640 “ cima 5641 Fun wfun 6505 ⟶wf 6507 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: f1opw2 7644 mptcnfimad 7965 ssenen 9115 f1opwfi 9307 isf34lem3 10328 subggim 19198 gicsubgen 19211 cnt1 23237 basqtop 23598 tgqtop 23599 hmeoopn 23653 hmeocld 23654 hmeontr 23656 qtopf1 23703 f1otrg 28798 tpr2rico 33902 eulerpartlemmf 34366 ballotlemscr 34510 ballotlemrinv0 34524 cvmlift2lem9a 35290 grpokerinj 37887 grimcnv 47885 uhgrimedg 47888 isubgr3stgrlem8 47969 |
| Copyright terms: Public domain | W3C validator |