Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imacnv Structured version   Visualization version   GIF version

Theorem f1imacnv 6462
 Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.)
Assertion
Ref Expression
f1imacnv ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)

Proof of Theorem f1imacnv
StepHypRef Expression
1 resima 5734 . 2 ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = (𝐹 “ (𝐹𝐶))
2 df-f1 6195 . . . . . . 7 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
32simprbi 489 . . . . . 6 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
43adantr 473 . . . . 5 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun 𝐹)
5 funcnvres 6267 . . . . 5 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
64, 5syl 17 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
76imaeq1d 5771 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹𝐶) “ (𝐹𝐶)) = ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)))
8 f1ores 6460 . . . . 5 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
9 f1ocnv 6458 . . . . 5 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
108, 9syl 17 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
11 imadmrn 5782 . . . . 5 ((𝐹𝐶) “ dom (𝐹𝐶)) = ran (𝐹𝐶)
12 f1odm 6450 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → dom (𝐹𝐶) = (𝐹𝐶))
1312imaeq2d 5772 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ((𝐹𝐶) “ dom (𝐹𝐶)) = ((𝐹𝐶) “ (𝐹𝐶)))
14 f1ofo 6453 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶(𝐹𝐶):(𝐹𝐶)–onto𝐶)
15 forn 6424 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 → ran (𝐹𝐶) = 𝐶)
1614, 15syl 17 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ran (𝐹𝐶) = 𝐶)
1711, 13, 163eqtr3a 2838 . . . 4 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
1810, 17syl 17 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
197, 18eqtr3d 2816 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = 𝐶)
201, 19syl5eqr 2828 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 387   = wceq 1507   ⊆ wss 3831  ◡ccnv 5407  dom cdm 5408  ran crn 5409   ↾ cres 5410   “ cima 5411  Fun wfun 6184  ⟶wf 6186  –1-1→wf1 6187  –onto→wfo 6188  –1-1-onto→wf1o 6189 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pr 5187 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-op 4449  df-br 4931  df-opab 4993  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197 This theorem is referenced by:  f1opw2  7220  ssenen  8489  f1opwfi  8625  isf34lem3  9597  subggim  18180  gicsubgen  18192  cnt1  21665  basqtop  22026  tgqtop  22027  hmeoopn  22081  hmeocld  22082  hmeontr  22084  qtopf1  22131  f1otrg  26363  tpr2rico  30799  eulerpartlemmf  31278  ballotlemscr  31422  ballotlemrinv0  31436  cvmlift2lem9a  32135  grpokerinj  34613  isomgrsym  43370
 Copyright terms: Public domain W3C validator