![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1imacnv | Structured version Visualization version GIF version |
Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.) |
Ref | Expression |
---|---|
f1imacnv | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resima 6035 | . 2 ⊢ ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶)) = (◡𝐹 “ (𝐹 “ 𝐶)) | |
2 | df-f1 6568 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
3 | 2 | simprbi 496 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → Fun ◡𝐹) |
5 | funcnvres 6646 | . . . . 5 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐶) = (◡𝐹 ↾ (𝐹 “ 𝐶))) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ◡(𝐹 ↾ 𝐶) = (◡𝐹 ↾ (𝐹 “ 𝐶))) |
7 | 6 | imaeq1d 6079 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶))) |
8 | f1ores 6863 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
9 | f1ocnv 6861 | . . . . 5 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶) |
11 | imadmrn 6090 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶) “ dom ◡(𝐹 ↾ 𝐶)) = ran ◡(𝐹 ↾ 𝐶) | |
12 | f1odm 6853 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → dom ◡(𝐹 ↾ 𝐶) = (𝐹 “ 𝐶)) | |
13 | 12 | imaeq2d 6080 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → (◡(𝐹 ↾ 𝐶) “ dom ◡(𝐹 ↾ 𝐶)) = (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶))) |
14 | f1ofo 6856 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–onto→𝐶) | |
15 | forn 6824 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–onto→𝐶 → ran ◡(𝐹 ↾ 𝐶) = 𝐶) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → ran ◡(𝐹 ↾ 𝐶) = 𝐶) |
17 | 11, 13, 16 | 3eqtr3a 2799 | . . . 4 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = 𝐶) |
18 | 10, 17 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = 𝐶) |
19 | 7, 18 | eqtr3d 2777 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶)) = 𝐶) |
20 | 1, 19 | eqtr3id 2789 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝐶)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3963 ◡ccnv 5688 dom cdm 5689 ran crn 5690 ↾ cres 5691 “ cima 5692 Fun wfun 6557 ⟶wf 6559 –1-1→wf1 6560 –onto→wfo 6561 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 |
This theorem is referenced by: f1opw2 7688 mptcnfimad 8010 ssenen 9190 f1opwfi 9394 isf34lem3 10413 subggim 19297 gicsubgen 19310 cnt1 23374 basqtop 23735 tgqtop 23736 hmeoopn 23790 hmeocld 23791 hmeontr 23793 qtopf1 23840 f1otrg 28894 tpr2rico 33873 eulerpartlemmf 34357 ballotlemscr 34500 ballotlemrinv0 34514 cvmlift2lem9a 35288 grpokerinj 37880 uspgrimprop 47811 grimcnv 47817 isubgr3stgrlem8 47876 |
Copyright terms: Public domain | W3C validator |