MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imacnv Structured version   Visualization version   GIF version

Theorem f1imacnv 6849
Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.)
Assertion
Ref Expression
f1imacnv ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)

Proof of Theorem f1imacnv
StepHypRef Expression
1 resima 6015 . 2 ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = (𝐹 “ (𝐹𝐶))
2 df-f1 6548 . . . . . . 7 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
32simprbi 497 . . . . . 6 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
43adantr 481 . . . . 5 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun 𝐹)
5 funcnvres 6626 . . . . 5 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
64, 5syl 17 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
76imaeq1d 6058 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹𝐶) “ (𝐹𝐶)) = ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)))
8 f1ores 6847 . . . . 5 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
9 f1ocnv 6845 . . . . 5 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
108, 9syl 17 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
11 imadmrn 6069 . . . . 5 ((𝐹𝐶) “ dom (𝐹𝐶)) = ran (𝐹𝐶)
12 f1odm 6837 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → dom (𝐹𝐶) = (𝐹𝐶))
1312imaeq2d 6059 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ((𝐹𝐶) “ dom (𝐹𝐶)) = ((𝐹𝐶) “ (𝐹𝐶)))
14 f1ofo 6840 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶(𝐹𝐶):(𝐹𝐶)–onto𝐶)
15 forn 6808 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 → ran (𝐹𝐶) = 𝐶)
1614, 15syl 17 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ran (𝐹𝐶) = 𝐶)
1711, 13, 163eqtr3a 2796 . . . 4 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
1810, 17syl 17 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
197, 18eqtr3d 2774 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = 𝐶)
201, 19eqtr3id 2786 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wss 3948  ccnv 5675  dom cdm 5676  ran crn 5677  cres 5678  cima 5679  Fun wfun 6537  wf 6539  1-1wf1 6540  ontowfo 6541  1-1-ontowf1o 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550
This theorem is referenced by:  f1opw2  7663  ssenen  9153  f1opwfi  9358  isf34lem3  10372  subggim  19142  gicsubgen  19154  cnt1  22861  basqtop  23222  tgqtop  23223  hmeoopn  23277  hmeocld  23278  hmeontr  23280  qtopf1  23327  f1otrg  28160  tpr2rico  32961  eulerpartlemmf  33443  ballotlemscr  33586  ballotlemrinv0  33600  cvmlift2lem9a  34363  grpokerinj  36847  isomgrsym  46583
  Copyright terms: Public domain W3C validator