Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1imacnv | Structured version Visualization version GIF version |
Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.) |
Ref | Expression |
---|---|
f1imacnv | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resima 5925 | . 2 ⊢ ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶)) = (◡𝐹 “ (𝐹 “ 𝐶)) | |
2 | df-f1 6438 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
3 | 2 | simprbi 497 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → Fun ◡𝐹) |
5 | funcnvres 6512 | . . . . 5 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐶) = (◡𝐹 ↾ (𝐹 “ 𝐶))) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ◡(𝐹 ↾ 𝐶) = (◡𝐹 ↾ (𝐹 “ 𝐶))) |
7 | 6 | imaeq1d 5968 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶))) |
8 | f1ores 6730 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
9 | f1ocnv 6728 | . . . . 5 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶) |
11 | imadmrn 5979 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶) “ dom ◡(𝐹 ↾ 𝐶)) = ran ◡(𝐹 ↾ 𝐶) | |
12 | f1odm 6720 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → dom ◡(𝐹 ↾ 𝐶) = (𝐹 “ 𝐶)) | |
13 | 12 | imaeq2d 5969 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → (◡(𝐹 ↾ 𝐶) “ dom ◡(𝐹 ↾ 𝐶)) = (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶))) |
14 | f1ofo 6723 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → ◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–onto→𝐶) | |
15 | forn 6691 | . . . . . 6 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–onto→𝐶 → ran ◡(𝐹 ↾ 𝐶) = 𝐶) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → ran ◡(𝐹 ↾ 𝐶) = 𝐶) |
17 | 11, 13, 16 | 3eqtr3a 2802 | . . . 4 ⊢ (◡(𝐹 ↾ 𝐶):(𝐹 “ 𝐶)–1-1-onto→𝐶 → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = 𝐶) |
18 | 10, 17 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡(𝐹 ↾ 𝐶) “ (𝐹 “ 𝐶)) = 𝐶) |
19 | 7, 18 | eqtr3d 2780 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → ((◡𝐹 ↾ (𝐹 “ 𝐶)) “ (𝐹 “ 𝐶)) = 𝐶) |
20 | 1, 19 | eqtr3id 2792 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (◡𝐹 “ (𝐹 “ 𝐶)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊆ wss 3887 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ↾ cres 5591 “ cima 5592 Fun wfun 6427 ⟶wf 6429 –1-1→wf1 6430 –onto→wfo 6431 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: f1opw2 7524 ssenen 8938 f1opwfi 9123 isf34lem3 10131 subggim 18882 gicsubgen 18894 cnt1 22501 basqtop 22862 tgqtop 22863 hmeoopn 22917 hmeocld 22918 hmeontr 22920 qtopf1 22967 f1otrg 27232 tpr2rico 31862 eulerpartlemmf 32342 ballotlemscr 32485 ballotlemrinv0 32499 cvmlift2lem9a 33265 grpokerinj 36051 isomgrsym 45288 |
Copyright terms: Public domain | W3C validator |