![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressnop0 | Structured version Visualization version GIF version |
Description: If 𝐴 is not in 𝐶, then the restriction of a singleton of 〈𝐴, 𝐵〉 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.) |
Ref | Expression |
---|---|
ressnop0 | ⊢ (¬ 𝐴 ∈ 𝐶 → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp1 5730 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × V) → 𝐴 ∈ 𝐶) | |
2 | df-res 5700 | . . . 4 ⊢ ({〈𝐴, 𝐵〉} ↾ 𝐶) = ({〈𝐴, 𝐵〉} ∩ (𝐶 × V)) | |
3 | incom 4216 | . . . 4 ⊢ ({〈𝐴, 𝐵〉} ∩ (𝐶 × V)) = ((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) | |
4 | 2, 3 | eqtri 2762 | . . 3 ⊢ ({〈𝐴, 𝐵〉} ↾ 𝐶) = ((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) |
5 | disjsn 4715 | . . . 4 ⊢ (((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) = ∅ ↔ ¬ 〈𝐴, 𝐵〉 ∈ (𝐶 × V)) | |
6 | 5 | biimpri 228 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ (𝐶 × V) → ((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) = ∅) |
7 | 4, 6 | eqtrid 2786 | . 2 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ (𝐶 × V) → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
8 | 1, 7 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ 𝐶 → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∩ cin 3961 ∅c0 4338 {csn 4630 〈cop 4636 × cxp 5686 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-opab 5210 df-xp 5694 df-res 5700 |
This theorem is referenced by: fvunsn 7198 fsnunres 7207 frrlem12 8320 wfrlem14OLD 8360 ex-res 30469 |
Copyright terms: Public domain | W3C validator |