| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressnop0 | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is not in 𝐶, then the restriction of a singleton of 〈𝐴, 𝐵〉 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.) |
| Ref | Expression |
|---|---|
| ressnop0 | ⊢ (¬ 𝐴 ∈ 𝐶 → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp1 5696 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × V) → 𝐴 ∈ 𝐶) | |
| 2 | df-res 5666 | . . . 4 ⊢ ({〈𝐴, 𝐵〉} ↾ 𝐶) = ({〈𝐴, 𝐵〉} ∩ (𝐶 × V)) | |
| 3 | incom 4184 | . . . 4 ⊢ ({〈𝐴, 𝐵〉} ∩ (𝐶 × V)) = ((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) | |
| 4 | 2, 3 | eqtri 2758 | . . 3 ⊢ ({〈𝐴, 𝐵〉} ↾ 𝐶) = ((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) |
| 5 | disjsn 4687 | . . . 4 ⊢ (((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) = ∅ ↔ ¬ 〈𝐴, 𝐵〉 ∈ (𝐶 × V)) | |
| 6 | 5 | biimpri 228 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ (𝐶 × V) → ((𝐶 × V) ∩ {〈𝐴, 𝐵〉}) = ∅) |
| 7 | 4, 6 | eqtrid 2782 | . 2 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ (𝐶 × V) → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
| 8 | 1, 7 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ 𝐶 → ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ∅c0 4308 {csn 4601 〈cop 4607 × cxp 5652 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 df-res 5666 |
| This theorem is referenced by: fvunsn 7170 fsnunres 7179 frrlem12 8294 wfrlem14OLD 8334 ex-res 30368 |
| Copyright terms: Public domain | W3C validator |