MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressnop0 Structured version   Visualization version   GIF version

Theorem ressnop0 7172
Description: If 𝐴 is not in 𝐶, then the restriction of a singleton of 𝐴, 𝐵 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.)
Assertion
Ref Expression
ressnop0 𝐴𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)

Proof of Theorem ressnop0
StepHypRef Expression
1 opelxp1 5730 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → 𝐴𝐶)
2 df-res 5700 . . . 4 ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V))
3 incom 4216 . . . 4 ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V)) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩})
42, 3eqtri 2762 . . 3 ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩})
5 disjsn 4715 . . . 4 (((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V))
65biimpri 228 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅)
74, 6eqtrid 2786 . 2 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
81, 7nsyl5 159 1 𝐴𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1536  wcel 2105  Vcvv 3477  cin 3961  c0 4338  {csn 4630  cop 4636   × cxp 5686  cres 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-opab 5210  df-xp 5694  df-res 5700
This theorem is referenced by:  fvunsn  7198  fsnunres  7207  frrlem12  8320  wfrlem14OLD  8360  ex-res  30469
  Copyright terms: Public domain W3C validator