MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressnop0 Structured version   Visualization version   GIF version

Theorem ressnop0 7125
Description: If 𝐴 is not in 𝐶, then the restriction of a singleton of 𝐴, 𝐵 to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.)
Assertion
Ref Expression
ressnop0 𝐴𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)

Proof of Theorem ressnop0
StepHypRef Expression
1 opelxp1 5680 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → 𝐴𝐶)
2 df-res 5650 . . . 4 ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V))
3 incom 4172 . . . 4 ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V)) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩})
42, 3eqtri 2752 . . 3 ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩})
5 disjsn 4675 . . . 4 (((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V))
65biimpri 228 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅)
74, 6eqtrid 2776 . 2 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
81, 7nsyl5 159 1 𝐴𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  c0 4296  {csn 4589  cop 4595   × cxp 5636  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644  df-res 5650
This theorem is referenced by:  fvunsn  7153  fsnunres  7162  frrlem12  8276  ex-res  30370
  Copyright terms: Public domain W3C validator