![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressnop0 | Structured version Visualization version GIF version |
Description: If 𝐴 is not in 𝐶, then the restriction of a singleton of ⟨𝐴, 𝐵⟩ to 𝐶 is null. (Contributed by Scott Fenton, 15-Apr-2011.) |
Ref | Expression |
---|---|
ressnop0 | ⊢ (¬ 𝐴 ∈ 𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp1 5718 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → 𝐴 ∈ 𝐶) | |
2 | df-res 5688 | . . . 4 ⊢ ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V)) | |
3 | incom 4201 | . . . 4 ⊢ ({⟨𝐴, 𝐵⟩} ∩ (𝐶 × V)) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) | |
4 | 2, 3 | eqtri 2759 | . . 3 ⊢ ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) |
5 | disjsn 4715 | . . . 4 ⊢ (((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V)) | |
6 | 5 | biimpri 227 | . . 3 ⊢ (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ((𝐶 × V) ∩ {⟨𝐴, 𝐵⟩}) = ∅) |
7 | 4, 6 | eqtrid 2783 | . 2 ⊢ (¬ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × V) → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅) |
8 | 1, 7 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ 𝐶 → ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∩ cin 3947 ∅c0 4322 {csn 4628 ⟨cop 4634 × cxp 5674 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-xp 5682 df-res 5688 |
This theorem is referenced by: fvunsn 7179 fsnunres 7188 frrlem12 8285 wfrlem14OLD 8325 ex-res 29962 |
Copyright terms: Public domain | W3C validator |