![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsnunres | Structured version Visualization version GIF version |
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
fsnunres | ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6670 | . . . 4 ⊢ (𝐹 Fn 𝑆 → (𝐹 ↾ 𝑆) = 𝐹) | |
2 | 1 | adantr 482 | . . 3 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → (𝐹 ↾ 𝑆) = 𝐹) |
3 | ressnop0 7151 | . . . 4 ⊢ (¬ 𝑋 ∈ 𝑆 → ({⟨𝑋, 𝑌⟩} ↾ 𝑆) = ∅) | |
4 | 3 | adantl 483 | . . 3 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ({⟨𝑋, 𝑌⟩} ↾ 𝑆) = ∅) |
5 | 2, 4 | uneq12d 4165 | . 2 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ↾ 𝑆) ∪ ({⟨𝑋, 𝑌⟩} ↾ 𝑆)) = (𝐹 ∪ ∅)) |
6 | resundir 5997 | . 2 ⊢ ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = ((𝐹 ↾ 𝑆) ∪ ({⟨𝑋, 𝑌⟩} ↾ 𝑆)) | |
7 | un0 4391 | . . 3 ⊢ (𝐹 ∪ ∅) = 𝐹 | |
8 | 7 | eqcomi 2742 | . 2 ⊢ 𝐹 = (𝐹 ∪ ∅) |
9 | 5, 6, 8 | 3eqtr4g 2798 | 1 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∪ cun 3947 ∅c0 4323 {csn 4629 ⟨cop 4635 ↾ cres 5679 Fn wfn 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-dm 5687 df-res 5689 df-fun 6546 df-fn 6547 |
This theorem is referenced by: pgpfaclem1 19951 islindf4 21393 |
Copyright terms: Public domain | W3C validator |