MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunres Structured version   Visualization version   GIF version

Theorem fsnunres 6682
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunres ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹)

Proof of Theorem fsnunres
StepHypRef Expression
1 fnresdm 6214 . . . 4 (𝐹 Fn 𝑆 → (𝐹𝑆) = 𝐹)
21adantr 468 . . 3 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → (𝐹𝑆) = 𝐹)
3 ressnop0 6647 . . . 4 𝑋𝑆 → ({⟨𝑋, 𝑌⟩} ↾ 𝑆) = ∅)
43adantl 469 . . 3 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ({⟨𝑋, 𝑌⟩} ↾ 𝑆) = ∅)
52, 4uneq12d 3974 . 2 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹𝑆) ∪ ({⟨𝑋, 𝑌⟩} ↾ 𝑆)) = (𝐹 ∪ ∅))
6 resundir 5622 . 2 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = ((𝐹𝑆) ∪ ({⟨𝑋, 𝑌⟩} ↾ 𝑆))
7 un0 4172 . . 3 (𝐹 ∪ ∅) = 𝐹
87eqcomi 2822 . 2 𝐹 = (𝐹 ∪ ∅)
95, 6, 83eqtr4g 2872 1 ((𝐹 Fn 𝑆 ∧ ¬ 𝑋𝑆) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ 𝑆) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1637  wcel 2157  cun 3774  c0 4123  {csn 4377  cop 4383  cres 5320   Fn wfn 6099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pr 5103
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-br 4852  df-opab 4914  df-xp 5324  df-rel 5325  df-dm 5328  df-res 5330  df-fun 6106  df-fn 6107
This theorem is referenced by:  pgpfaclem1  18685  islindf4  20391
  Copyright terms: Public domain W3C validator