Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsnunres | Structured version Visualization version GIF version |
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
fsnunres | ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6455 | . . . 4 ⊢ (𝐹 Fn 𝑆 → (𝐹 ↾ 𝑆) = 𝐹) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → (𝐹 ↾ 𝑆) = 𝐹) |
3 | ressnop0 6927 | . . . 4 ⊢ (¬ 𝑋 ∈ 𝑆 → ({〈𝑋, 𝑌〉} ↾ 𝑆) = ∅) | |
4 | 3 | adantl 485 | . . 3 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ({〈𝑋, 𝑌〉} ↾ 𝑆) = ∅) |
5 | 2, 4 | uneq12d 4054 | . 2 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ↾ 𝑆) ∪ ({〈𝑋, 𝑌〉} ↾ 𝑆)) = (𝐹 ∪ ∅)) |
6 | resundir 5840 | . 2 ⊢ ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = ((𝐹 ↾ 𝑆) ∪ ({〈𝑋, 𝑌〉} ↾ 𝑆)) | |
7 | un0 4279 | . . 3 ⊢ (𝐹 ∪ ∅) = 𝐹 | |
8 | 7 | eqcomi 2747 | . 2 ⊢ 𝐹 = (𝐹 ∪ ∅) |
9 | 5, 6, 8 | 3eqtr4g 2798 | 1 ⊢ ((𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) ↾ 𝑆) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∪ cun 3841 ∅c0 4211 {csn 4516 〈cop 4522 ↾ cres 5527 Fn wfn 6334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-rel 5532 df-dm 5535 df-res 5537 df-fun 6341 df-fn 6342 |
This theorem is referenced by: pgpfaclem1 19324 islindf4 20656 |
Copyright terms: Public domain | W3C validator |