MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem12 Structured version   Visualization version   GIF version

Theorem frrlem12 8230
Description: Lemma for well-founded recursion. Next, we calculate the value of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
Assertion
Ref Expression
frrlem12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑤,𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem12
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elun 4104 . . . 4 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}))
2 velsn 4593 . . . . 5 (𝑤 ∈ {𝑧} ↔ 𝑤 = 𝑧)
32orbi2i 912 . . . 4 ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧))
41, 3bitri 275 . . 3 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧))
5 elinel2 4153 . . . . . . . 8 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → 𝑤 ∈ dom 𝐹)
6 frrlem11.1 . . . . . . . . . 10 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
76frrlem1 8219 . . . . . . . . 9 𝐵 = {𝑝 ∣ ∃𝑞(𝑝 Fn 𝑞 ∧ (𝑞𝐴 ∧ ∀𝑤𝑞 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑞) ∧ ∀𝑤𝑞 (𝑝𝑤) = (𝑤𝐺(𝑝 ↾ Pred(𝑅, 𝐴, 𝑤))))}
8 frrlem11.2 . . . . . . . . 9 𝐹 = frecs(𝑅, 𝐴, 𝐺)
9 breq1 5095 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (𝑥𝑔𝑢𝑞𝑔𝑢))
10 breq1 5095 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (𝑥𝑣𝑞𝑣))
119, 10anbi12d 632 . . . . . . . . . . . 12 (𝑥 = 𝑞 → ((𝑥𝑔𝑢𝑥𝑣) ↔ (𝑞𝑔𝑢𝑞𝑣)))
1211imbi1d 341 . . . . . . . . . . 11 (𝑥 = 𝑞 → (((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣) ↔ ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣)))
1312imbi2d 340 . . . . . . . . . 10 (𝑥 = 𝑞 → (((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)) ↔ ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣))))
14 frrlem11.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
1513, 14chvarvv 1989 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣))
167, 8, 15frrlem10 8228 . . . . . . . 8 ((𝜑𝑤 ∈ dom 𝐹) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
175, 16sylan2 593 . . . . . . 7 ((𝜑𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
1817adantlr 715 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
19 frrlem11.4 . . . . . . . . 9 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
2019fveq1i 6823 . . . . . . . 8 (𝐶𝑤) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤)
216, 8, 14frrlem9 8227 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
2221funresd 6525 . . . . . . . . . . . 12 (𝜑 → Fun (𝐹𝑆))
23 dmres 5963 . . . . . . . . . . . 12 dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)
24 df-fn 6485 . . . . . . . . . . . 12 ((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ↔ (Fun (𝐹𝑆) ∧ dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)))
2522, 23, 24sylanblrc 590 . . . . . . . . . . 11 (𝜑 → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
2726adantr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
28 vex 3440 . . . . . . . . . . 11 𝑧 ∈ V
29 ovex 7382 . . . . . . . . . . 11 (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
3028, 29fnsn 6540 . . . . . . . . . 10 {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧}
3130a1i 11 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧})
32 eldifn 4083 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
33 elinel2 4153 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑆 ∩ dom 𝐹) → 𝑧 ∈ dom 𝐹)
3432, 33nsyl 140 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹))
35 disjsn 4663 . . . . . . . . . . . 12 (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹))
3634, 35sylibr 234 . . . . . . . . . . 11 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
3837adantr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
39 simpr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → 𝑤 ∈ (𝑆 ∩ dom 𝐹))
40 fvun1 6914 . . . . . . . . 9 (((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧} ∧ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹))) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤) = ((𝐹𝑆)‘𝑤))
4127, 31, 38, 39, 40syl112anc 1376 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤) = ((𝐹𝑆)‘𝑤))
4220, 41eqtrid 2776 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = ((𝐹𝑆)‘𝑤))
43 elinel1 4152 . . . . . . . . 9 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → 𝑤𝑆)
4443adantl 481 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → 𝑤𝑆)
4544fvresd 6842 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝐹𝑆)‘𝑤) = (𝐹𝑤))
4642, 45eqtrd 2764 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = (𝐹𝑤))
476, 8, 14, 19frrlem11 8229 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
48 fnfun 6582 . . . . . . . . . . 11 (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → Fun 𝐶)
4947, 48syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Fun 𝐶)
5049adantr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Fun 𝐶)
51 ssun1 4129 . . . . . . . . . . 11 (𝐹𝑆) ⊆ ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
5251, 19sseqtrri 3985 . . . . . . . . . 10 (𝐹𝑆) ⊆ 𝐶
5352a1i 11 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑆) ⊆ 𝐶)
54 eldifi 4082 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
55 frrlem12.7 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
5654, 55sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
57 rspa 3218 . . . . . . . . . . . 12 ((∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆𝑤𝑆) → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
5856, 43, 57syl2an 596 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
596, 8frrlem8 8226 . . . . . . . . . . . . 13 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
605, 59syl 17 . . . . . . . . . . . 12 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
6160adantl 481 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
6258, 61ssind 4192 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹))
6362, 23sseqtrrdi 3977 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom (𝐹𝑆))
64 fun2ssres 6527 . . . . . . . . 9 ((Fun 𝐶 ∧ (𝐹𝑆) ⊆ 𝐶 ∧ Pred(𝑅, 𝐴, 𝑤) ⊆ dom (𝐹𝑆)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)))
6550, 53, 63, 64syl3anc 1373 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)))
6658resabs1d 5959 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑤)))
6765, 66eqtrd 2764 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑤)))
6867oveq2d 7365 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
6918, 46, 683eqtr4d 2774 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
7069ex 412 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 ∈ (𝑆 ∩ dom 𝐹) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
7128, 29fvsn 7117 . . . . . 6 ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
7219fveq1i 6823 . . . . . . 7 (𝐶𝑧) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧)
7330a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧})
74 vsnid 4615 . . . . . . . . 9 𝑧 ∈ {𝑧}
7574a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑧 ∈ {𝑧})
76 fvun2 6915 . . . . . . . 8 (((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧} ∧ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧})) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7726, 73, 37, 75, 76syl112anc 1376 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7872, 77eqtrid 2776 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7919reseq1i 5926 . . . . . . . . 9 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧))
80 resundir 5945 . . . . . . . . 9 (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
8179, 80eqtri 2752 . . . . . . . 8 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
82 frrlem12.6 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
8354, 82sylan2 593 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
8483resabs1d 5959 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
85 frrlem12.5 . . . . . . . . . . . . 13 (𝜑𝑅 Fr 𝐴)
86 predfrirr 6282 . . . . . . . . . . . . 13 (𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
8785, 86syl 17 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
8887adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
89 ressnop0 7087 . . . . . . . . . . 11 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧) → ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
9088, 89syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
9184, 90uneq12d 4120 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅))
92 un0 4345 . . . . . . . . 9 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
9391, 92eqtrdi 2780 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
9481, 93eqtrid 2776 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
9594oveq2d 7365 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
9671, 78, 953eqtr4a 2790 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶𝑧) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
97 fveq2 6822 . . . . . 6 (𝑤 = 𝑧 → (𝐶𝑤) = (𝐶𝑧))
98 id 22 . . . . . . 7 (𝑤 = 𝑧𝑤 = 𝑧)
99 predeq3 6253 . . . . . . . 8 (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧))
10099reseq2d 5930 . . . . . . 7 (𝑤 = 𝑧 → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))
10198, 100oveq12d 7367 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
10297, 101eqeq12d 2745 . . . . 5 (𝑤 = 𝑧 → ((𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐶𝑧) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))))
10396, 102syl5ibrcom 247 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 = 𝑧 → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
10470, 103jaod 859 . . 3 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
1054, 104biimtrid 242 . 2 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
1061053impia 1117 1 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  {csn 4577  cop 4583   class class class wbr 5092   Fr wfr 5569  dom cdm 5619  cres 5621  Predcpred 6248  Fun wfun 6476   Fn wfn 6477  cfv 6482  (class class class)co 7349  frecscfrecs 8213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-id 5514  df-fr 5572  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-ov 7352  df-frecs 8214
This theorem is referenced by:  frrlem13  8231
  Copyright terms: Public domain W3C validator