MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem12 Structured version   Visualization version   GIF version

Theorem frrlem12 8016
Description: Lemma for well-founded recursion. Next, we calculate the value of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
Assertion
Ref Expression
frrlem12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑤,𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem12
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elun 4049 . . . 4 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}))
2 velsn 4543 . . . . 5 (𝑤 ∈ {𝑧} ↔ 𝑤 = 𝑧)
32orbi2i 913 . . . 4 ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧))
41, 3bitri 278 . . 3 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧))
5 elinel2 4096 . . . . . . . 8 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → 𝑤 ∈ dom 𝐹)
6 frrlem11.1 . . . . . . . . . 10 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
76frrlem1 8005 . . . . . . . . 9 𝐵 = {𝑝 ∣ ∃𝑞(𝑝 Fn 𝑞 ∧ (𝑞𝐴 ∧ ∀𝑤𝑞 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑞) ∧ ∀𝑤𝑞 (𝑝𝑤) = (𝑤𝐺(𝑝 ↾ Pred(𝑅, 𝐴, 𝑤))))}
8 frrlem11.2 . . . . . . . . 9 𝐹 = frecs(𝑅, 𝐴, 𝐺)
9 breq1 5042 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (𝑥𝑔𝑢𝑞𝑔𝑢))
10 breq1 5042 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (𝑥𝑣𝑞𝑣))
119, 10anbi12d 634 . . . . . . . . . . . 12 (𝑥 = 𝑞 → ((𝑥𝑔𝑢𝑥𝑣) ↔ (𝑞𝑔𝑢𝑞𝑣)))
1211imbi1d 345 . . . . . . . . . . 11 (𝑥 = 𝑞 → (((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣) ↔ ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣)))
1312imbi2d 344 . . . . . . . . . 10 (𝑥 = 𝑞 → (((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)) ↔ ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣))))
14 frrlem11.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
1513, 14chvarvv 2008 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣))
167, 8, 15frrlem10 8014 . . . . . . . 8 ((𝜑𝑤 ∈ dom 𝐹) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
175, 16sylan2 596 . . . . . . 7 ((𝜑𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
1817adantlr 715 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
19 frrlem11.4 . . . . . . . . 9 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
2019fveq1i 6696 . . . . . . . 8 (𝐶𝑤) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤)
216, 8, 14frrlem9 8013 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
2221funresd 6401 . . . . . . . . . . . 12 (𝜑 → Fun (𝐹𝑆))
23 dmres 5858 . . . . . . . . . . . 12 dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)
24 df-fn 6361 . . . . . . . . . . . 12 ((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ↔ (Fun (𝐹𝑆) ∧ dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)))
2522, 23, 24sylanblrc 593 . . . . . . . . . . 11 (𝜑 → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
2625adantr 484 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
2726adantr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
28 vex 3402 . . . . . . . . . . 11 𝑧 ∈ V
29 ovex 7224 . . . . . . . . . . 11 (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
3028, 29fnsn 6416 . . . . . . . . . 10 {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧}
3130a1i 11 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧})
32 eldifn 4028 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
33 elinel2 4096 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑆 ∩ dom 𝐹) → 𝑧 ∈ dom 𝐹)
3432, 33nsyl 142 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹))
35 disjsn 4613 . . . . . . . . . . . 12 (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹))
3634, 35sylibr 237 . . . . . . . . . . 11 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
3736adantl 485 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
3837adantr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
39 simpr 488 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → 𝑤 ∈ (𝑆 ∩ dom 𝐹))
40 fvun1 6780 . . . . . . . . 9 (((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧} ∧ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹))) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤) = ((𝐹𝑆)‘𝑤))
4127, 31, 38, 39, 40syl112anc 1376 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤) = ((𝐹𝑆)‘𝑤))
4220, 41syl5eq 2783 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = ((𝐹𝑆)‘𝑤))
43 elinel1 4095 . . . . . . . . 9 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → 𝑤𝑆)
4443adantl 485 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → 𝑤𝑆)
4544fvresd 6715 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝐹𝑆)‘𝑤) = (𝐹𝑤))
4642, 45eqtrd 2771 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = (𝐹𝑤))
476, 8, 14, 19frrlem11 8015 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
48 fnfun 6457 . . . . . . . . . . 11 (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → Fun 𝐶)
4947, 48syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Fun 𝐶)
5049adantr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Fun 𝐶)
51 ssun1 4072 . . . . . . . . . . 11 (𝐹𝑆) ⊆ ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
5251, 19sseqtrri 3924 . . . . . . . . . 10 (𝐹𝑆) ⊆ 𝐶
5352a1i 11 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑆) ⊆ 𝐶)
54 eldifi 4027 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
55 frrlem12.7 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
5654, 55sylan2 596 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
57 rspa 3118 . . . . . . . . . . . 12 ((∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆𝑤𝑆) → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
5856, 43, 57syl2an 599 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
596, 8frrlem8 8012 . . . . . . . . . . . . 13 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
605, 59syl 17 . . . . . . . . . . . 12 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
6160adantl 485 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
6258, 61ssind 4133 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹))
6362, 23sseqtrrdi 3938 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom (𝐹𝑆))
64 fun2ssres 6403 . . . . . . . . 9 ((Fun 𝐶 ∧ (𝐹𝑆) ⊆ 𝐶 ∧ Pred(𝑅, 𝐴, 𝑤) ⊆ dom (𝐹𝑆)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)))
6550, 53, 63, 64syl3anc 1373 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)))
6658resabs1d 5867 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑤)))
6765, 66eqtrd 2771 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑤)))
6867oveq2d 7207 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
6918, 46, 683eqtr4d 2781 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
7069ex 416 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 ∈ (𝑆 ∩ dom 𝐹) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
7128, 29fvsn 6974 . . . . . 6 ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
7219fveq1i 6696 . . . . . . 7 (𝐶𝑧) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧)
7330a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧})
74 vsnid 4564 . . . . . . . . 9 𝑧 ∈ {𝑧}
7574a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑧 ∈ {𝑧})
76 fvun2 6781 . . . . . . . 8 (((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧} ∧ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧})) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7726, 73, 37, 75, 76syl112anc 1376 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7872, 77syl5eq 2783 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7919reseq1i 5832 . . . . . . . . 9 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧))
80 resundir 5851 . . . . . . . . 9 (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
8179, 80eqtri 2759 . . . . . . . 8 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
82 frrlem12.6 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
8354, 82sylan2 596 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
8483resabs1d 5867 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
85 frrlem12.5 . . . . . . . . . . . . 13 (𝜑𝑅 Fr 𝐴)
86 predfrirr 6170 . . . . . . . . . . . . 13 (𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
8785, 86syl 17 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
8887adantr 484 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
89 ressnop0 6946 . . . . . . . . . . 11 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧) → ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
9088, 89syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
9184, 90uneq12d 4064 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅))
92 un0 4291 . . . . . . . . 9 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
9391, 92eqtrdi 2787 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
9481, 93syl5eq 2783 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
9594oveq2d 7207 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
9671, 78, 953eqtr4a 2797 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶𝑧) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
97 fveq2 6695 . . . . . 6 (𝑤 = 𝑧 → (𝐶𝑤) = (𝐶𝑧))
98 id 22 . . . . . . 7 (𝑤 = 𝑧𝑤 = 𝑧)
99 predeq3 6144 . . . . . . . 8 (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧))
10099reseq2d 5836 . . . . . . 7 (𝑤 = 𝑧 → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))
10198, 100oveq12d 7209 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
10297, 101eqeq12d 2752 . . . . 5 (𝑤 = 𝑧 → ((𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐶𝑧) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))))
10396, 102syl5ibrcom 250 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 = 𝑧 → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
10470, 103jaod 859 . . 3 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
1054, 104syl5bi 245 . 2 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
1061053impia 1119 1 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wex 1787  wcel 2112  {cab 2714  wral 3051  cdif 3850  cun 3851  cin 3852  wss 3853  c0 4223  {csn 4527  cop 4533   class class class wbr 5039   Fr wfr 5491  dom cdm 5536  cres 5538  Predcpred 6139  Fun wfun 6352   Fn wfn 6353  cfv 6358  (class class class)co 7191  frecscfrecs 8000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-id 5440  df-fr 5494  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-iota 6316  df-fun 6360  df-fn 6361  df-fv 6366  df-ov 7194  df-frecs 8001
This theorem is referenced by:  frrlem13  8017
  Copyright terms: Public domain W3C validator