MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem12 Structured version   Visualization version   GIF version

Theorem frrlem12 8113
Description: Lemma for well-founded recursion. Next, we calculate the value of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
Assertion
Ref Expression
frrlem12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑤,𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem12
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elun 4083 . . . 4 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}))
2 velsn 4577 . . . . 5 (𝑤 ∈ {𝑧} ↔ 𝑤 = 𝑧)
32orbi2i 910 . . . 4 ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧))
41, 3bitri 274 . . 3 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧))
5 elinel2 4130 . . . . . . . 8 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → 𝑤 ∈ dom 𝐹)
6 frrlem11.1 . . . . . . . . . 10 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
76frrlem1 8102 . . . . . . . . 9 𝐵 = {𝑝 ∣ ∃𝑞(𝑝 Fn 𝑞 ∧ (𝑞𝐴 ∧ ∀𝑤𝑞 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑞) ∧ ∀𝑤𝑞 (𝑝𝑤) = (𝑤𝐺(𝑝 ↾ Pred(𝑅, 𝐴, 𝑤))))}
8 frrlem11.2 . . . . . . . . 9 𝐹 = frecs(𝑅, 𝐴, 𝐺)
9 breq1 5077 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (𝑥𝑔𝑢𝑞𝑔𝑢))
10 breq1 5077 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (𝑥𝑣𝑞𝑣))
119, 10anbi12d 631 . . . . . . . . . . . 12 (𝑥 = 𝑞 → ((𝑥𝑔𝑢𝑥𝑣) ↔ (𝑞𝑔𝑢𝑞𝑣)))
1211imbi1d 342 . . . . . . . . . . 11 (𝑥 = 𝑞 → (((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣) ↔ ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣)))
1312imbi2d 341 . . . . . . . . . 10 (𝑥 = 𝑞 → (((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)) ↔ ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣))))
14 frrlem11.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
1513, 14chvarvv 2002 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣))
167, 8, 15frrlem10 8111 . . . . . . . 8 ((𝜑𝑤 ∈ dom 𝐹) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
175, 16sylan2 593 . . . . . . 7 ((𝜑𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
1817adantlr 712 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
19 frrlem11.4 . . . . . . . . 9 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
2019fveq1i 6775 . . . . . . . 8 (𝐶𝑤) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤)
216, 8, 14frrlem9 8110 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
2221funresd 6477 . . . . . . . . . . . 12 (𝜑 → Fun (𝐹𝑆))
23 dmres 5913 . . . . . . . . . . . 12 dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)
24 df-fn 6436 . . . . . . . . . . . 12 ((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ↔ (Fun (𝐹𝑆) ∧ dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)))
2522, 23, 24sylanblrc 590 . . . . . . . . . . 11 (𝜑 → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
2625adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
2726adantr 481 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
28 vex 3436 . . . . . . . . . . 11 𝑧 ∈ V
29 ovex 7308 . . . . . . . . . . 11 (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
3028, 29fnsn 6492 . . . . . . . . . 10 {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧}
3130a1i 11 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧})
32 eldifn 4062 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
33 elinel2 4130 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑆 ∩ dom 𝐹) → 𝑧 ∈ dom 𝐹)
3432, 33nsyl 140 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹))
35 disjsn 4647 . . . . . . . . . . . 12 (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹))
3634, 35sylibr 233 . . . . . . . . . . 11 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
3736adantl 482 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
3837adantr 481 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
39 simpr 485 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → 𝑤 ∈ (𝑆 ∩ dom 𝐹))
40 fvun1 6859 . . . . . . . . 9 (((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧} ∧ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹))) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤) = ((𝐹𝑆)‘𝑤))
4127, 31, 38, 39, 40syl112anc 1373 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤) = ((𝐹𝑆)‘𝑤))
4220, 41eqtrid 2790 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = ((𝐹𝑆)‘𝑤))
43 elinel1 4129 . . . . . . . . 9 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → 𝑤𝑆)
4443adantl 482 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → 𝑤𝑆)
4544fvresd 6794 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝐹𝑆)‘𝑤) = (𝐹𝑤))
4642, 45eqtrd 2778 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = (𝐹𝑤))
476, 8, 14, 19frrlem11 8112 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
48 fnfun 6533 . . . . . . . . . . 11 (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → Fun 𝐶)
4947, 48syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Fun 𝐶)
5049adantr 481 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Fun 𝐶)
51 ssun1 4106 . . . . . . . . . . 11 (𝐹𝑆) ⊆ ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
5251, 19sseqtrri 3958 . . . . . . . . . 10 (𝐹𝑆) ⊆ 𝐶
5352a1i 11 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑆) ⊆ 𝐶)
54 eldifi 4061 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
55 frrlem12.7 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
5654, 55sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
57 rspa 3132 . . . . . . . . . . . 12 ((∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆𝑤𝑆) → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
5856, 43, 57syl2an 596 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
596, 8frrlem8 8109 . . . . . . . . . . . . 13 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
605, 59syl 17 . . . . . . . . . . . 12 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
6160adantl 482 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
6258, 61ssind 4166 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹))
6362, 23sseqtrrdi 3972 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom (𝐹𝑆))
64 fun2ssres 6479 . . . . . . . . 9 ((Fun 𝐶 ∧ (𝐹𝑆) ⊆ 𝐶 ∧ Pred(𝑅, 𝐴, 𝑤) ⊆ dom (𝐹𝑆)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)))
6550, 53, 63, 64syl3anc 1370 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)))
6658resabs1d 5922 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑤)))
6765, 66eqtrd 2778 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑤)))
6867oveq2d 7291 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
6918, 46, 683eqtr4d 2788 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
7069ex 413 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 ∈ (𝑆 ∩ dom 𝐹) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
7128, 29fvsn 7053 . . . . . 6 ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
7219fveq1i 6775 . . . . . . 7 (𝐶𝑧) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧)
7330a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧})
74 vsnid 4598 . . . . . . . . 9 𝑧 ∈ {𝑧}
7574a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑧 ∈ {𝑧})
76 fvun2 6860 . . . . . . . 8 (((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧} ∧ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧})) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7726, 73, 37, 75, 76syl112anc 1373 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7872, 77eqtrid 2790 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7919reseq1i 5887 . . . . . . . . 9 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧))
80 resundir 5906 . . . . . . . . 9 (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
8179, 80eqtri 2766 . . . . . . . 8 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
82 frrlem12.6 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
8354, 82sylan2 593 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
8483resabs1d 5922 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
85 frrlem12.5 . . . . . . . . . . . . 13 (𝜑𝑅 Fr 𝐴)
86 predfrirr 6237 . . . . . . . . . . . . 13 (𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
8785, 86syl 17 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
8887adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
89 ressnop0 7025 . . . . . . . . . . 11 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧) → ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
9088, 89syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
9184, 90uneq12d 4098 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅))
92 un0 4324 . . . . . . . . 9 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
9391, 92eqtrdi 2794 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
9481, 93eqtrid 2790 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
9594oveq2d 7291 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
9671, 78, 953eqtr4a 2804 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶𝑧) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
97 fveq2 6774 . . . . . 6 (𝑤 = 𝑧 → (𝐶𝑤) = (𝐶𝑧))
98 id 22 . . . . . . 7 (𝑤 = 𝑧𝑤 = 𝑧)
99 predeq3 6206 . . . . . . . 8 (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧))
10099reseq2d 5891 . . . . . . 7 (𝑤 = 𝑧 → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))
10198, 100oveq12d 7293 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
10297, 101eqeq12d 2754 . . . . 5 (𝑤 = 𝑧 → ((𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐶𝑧) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))))
10396, 102syl5ibrcom 246 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 = 𝑧 → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
10470, 103jaod 856 . . 3 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
1054, 104syl5bi 241 . 2 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
1061053impia 1116 1 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  cop 4567   class class class wbr 5074   Fr wfr 5541  dom cdm 5589  cres 5591  Predcpred 6201  Fun wfun 6427   Fn wfn 6428  cfv 6433  (class class class)co 7275  frecscfrecs 8096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-id 5489  df-fr 5544  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-ov 7278  df-frecs 8097
This theorem is referenced by:  frrlem13  8114
  Copyright terms: Public domain W3C validator