MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem12 Structured version   Visualization version   GIF version

Theorem frrlem12 8321
Description: Lemma for well-founded recursion. Next, we calculate the value of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
Assertion
Ref Expression
frrlem12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑤,𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem12
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elun 4163 . . . 4 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}))
2 velsn 4647 . . . . 5 (𝑤 ∈ {𝑧} ↔ 𝑤 = 𝑧)
32orbi2i 912 . . . 4 ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 ∈ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧))
41, 3bitri 275 . . 3 (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) ↔ (𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧))
5 elinel2 4212 . . . . . . . 8 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → 𝑤 ∈ dom 𝐹)
6 frrlem11.1 . . . . . . . . . 10 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
76frrlem1 8310 . . . . . . . . 9 𝐵 = {𝑝 ∣ ∃𝑞(𝑝 Fn 𝑞 ∧ (𝑞𝐴 ∧ ∀𝑤𝑞 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑞) ∧ ∀𝑤𝑞 (𝑝𝑤) = (𝑤𝐺(𝑝 ↾ Pred(𝑅, 𝐴, 𝑤))))}
8 frrlem11.2 . . . . . . . . 9 𝐹 = frecs(𝑅, 𝐴, 𝐺)
9 breq1 5151 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (𝑥𝑔𝑢𝑞𝑔𝑢))
10 breq1 5151 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → (𝑥𝑣𝑞𝑣))
119, 10anbi12d 632 . . . . . . . . . . . 12 (𝑥 = 𝑞 → ((𝑥𝑔𝑢𝑥𝑣) ↔ (𝑞𝑔𝑢𝑞𝑣)))
1211imbi1d 341 . . . . . . . . . . 11 (𝑥 = 𝑞 → (((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣) ↔ ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣)))
1312imbi2d 340 . . . . . . . . . 10 (𝑥 = 𝑞 → (((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)) ↔ ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣))))
14 frrlem11.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
1513, 14chvarvv 1996 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑞𝑔𝑢𝑞𝑣) → 𝑢 = 𝑣))
167, 8, 15frrlem10 8319 . . . . . . . 8 ((𝜑𝑤 ∈ dom 𝐹) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
175, 16sylan2 593 . . . . . . 7 ((𝜑𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
1817adantlr 715 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑤) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
19 frrlem11.4 . . . . . . . . 9 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
2019fveq1i 6908 . . . . . . . 8 (𝐶𝑤) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤)
216, 8, 14frrlem9 8318 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
2221funresd 6611 . . . . . . . . . . . 12 (𝜑 → Fun (𝐹𝑆))
23 dmres 6032 . . . . . . . . . . . 12 dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)
24 df-fn 6566 . . . . . . . . . . . 12 ((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ↔ (Fun (𝐹𝑆) ∧ dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)))
2522, 23, 24sylanblrc 590 . . . . . . . . . . 11 (𝜑 → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
2726adantr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑆) Fn (𝑆 ∩ dom 𝐹))
28 vex 3482 . . . . . . . . . . 11 𝑧 ∈ V
29 ovex 7464 . . . . . . . . . . 11 (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
3028, 29fnsn 6626 . . . . . . . . . 10 {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧}
3130a1i 11 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧})
32 eldifn 4142 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
33 elinel2 4212 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑆 ∩ dom 𝐹) → 𝑧 ∈ dom 𝐹)
3432, 33nsyl 140 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹))
35 disjsn 4716 . . . . . . . . . . . 12 (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ (𝑆 ∩ dom 𝐹))
3634, 35sylibr 234 . . . . . . . . . . 11 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
3837adantr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅)
39 simpr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → 𝑤 ∈ (𝑆 ∩ dom 𝐹))
40 fvun1 7000 . . . . . . . . 9 (((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧} ∧ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹))) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤) = ((𝐹𝑆)‘𝑤))
4127, 31, 38, 39, 40syl112anc 1373 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑤) = ((𝐹𝑆)‘𝑤))
4220, 41eqtrid 2787 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = ((𝐹𝑆)‘𝑤))
43 elinel1 4211 . . . . . . . . 9 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → 𝑤𝑆)
4443adantl 481 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → 𝑤𝑆)
4544fvresd 6927 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝐹𝑆)‘𝑤) = (𝐹𝑤))
4642, 45eqtrd 2775 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = (𝐹𝑤))
476, 8, 14, 19frrlem11 8320 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}))
48 fnfun 6669 . . . . . . . . . . 11 (𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → Fun 𝐶)
4947, 48syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Fun 𝐶)
5049adantr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Fun 𝐶)
51 ssun1 4188 . . . . . . . . . . 11 (𝐹𝑆) ⊆ ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
5251, 19sseqtrri 4033 . . . . . . . . . 10 (𝐹𝑆) ⊆ 𝐶
5352a1i 11 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐹𝑆) ⊆ 𝐶)
54 eldifi 4141 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
55 frrlem12.7 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
5654, 55sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
57 rspa 3246 . . . . . . . . . . . 12 ((∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆𝑤𝑆) → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
5856, 43, 57syl2an 596 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
596, 8frrlem8 8317 . . . . . . . . . . . . 13 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
605, 59syl 17 . . . . . . . . . . . 12 (𝑤 ∈ (𝑆 ∩ dom 𝐹) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
6160adantl 481 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
6258, 61ssind 4249 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ (𝑆 ∩ dom 𝐹))
6362, 23sseqtrrdi 4047 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑤) ⊆ dom (𝐹𝑆))
64 fun2ssres 6613 . . . . . . . . 9 ((Fun 𝐶 ∧ (𝐹𝑆) ⊆ 𝐶 ∧ Pred(𝑅, 𝐴, 𝑤) ⊆ dom (𝐹𝑆)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)))
6550, 53, 63, 64syl3anc 1370 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)))
6658resabs1d 6028 . . . . . . . 8 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑤)))
6765, 66eqtrd 2775 . . . . . . 7 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑤)))
6867oveq2d 7447 . . . . . 6 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑤𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑤))))
6918, 46, 683eqtr4d 2785 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) ∧ 𝑤 ∈ (𝑆 ∩ dom 𝐹)) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
7069ex 412 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 ∈ (𝑆 ∩ dom 𝐹) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
7128, 29fvsn 7201 . . . . . 6 ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
7219fveq1i 6908 . . . . . . 7 (𝐶𝑧) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧)
7330a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧})
74 vsnid 4668 . . . . . . . . 9 𝑧 ∈ {𝑧}
7574a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝑧 ∈ {𝑧})
76 fvun2 7001 . . . . . . . 8 (((𝐹𝑆) Fn (𝑆 ∩ dom 𝐹) ∧ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} Fn {𝑧} ∧ (((𝑆 ∩ dom 𝐹) ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧})) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7726, 73, 37, 75, 76syl112anc 1373 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})‘𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7872, 77eqtrid 2787 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶𝑧) = ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}‘𝑧))
7919reseq1i 5996 . . . . . . . . 9 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧))
80 resundir 6015 . . . . . . . . 9 (((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
8179, 80eqtri 2763 . . . . . . . 8 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
82 frrlem12.6 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
8354, 82sylan2 593 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
8483resabs1d 6028 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
85 frrlem12.5 . . . . . . . . . . . . 13 (𝜑𝑅 Fr 𝐴)
86 predfrirr 6357 . . . . . . . . . . . . 13 (𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
8785, 86syl 17 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
8887adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
89 ressnop0 7173 . . . . . . . . . . 11 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧) → ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
9088, 89syl 17 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
9184, 90uneq12d 4179 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅))
92 un0 4400 . . . . . . . . 9 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
9391, 92eqtrdi 2791 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (((𝐹𝑆) ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
9481, 93eqtrid 2787 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
9594oveq2d 7447 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
9671, 78, 953eqtr4a 2801 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝐶𝑧) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
97 fveq2 6907 . . . . . 6 (𝑤 = 𝑧 → (𝐶𝑤) = (𝐶𝑧))
98 id 22 . . . . . . 7 (𝑤 = 𝑧𝑤 = 𝑧)
99 predeq3 6327 . . . . . . . 8 (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧))
10099reseq2d 6000 . . . . . . 7 (𝑤 = 𝑧 → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))
10198, 100oveq12d 7449 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
10297, 101eqeq12d 2751 . . . . 5 (𝑤 = 𝑧 → ((𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐶𝑧) = (𝑧𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))))
10396, 102syl5ibrcom 247 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 = 𝑧 → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
10470, 103jaod 859 . . 3 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ((𝑤 ∈ (𝑆 ∩ dom 𝐹) ∨ 𝑤 = 𝑧) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
1054, 104biimtrid 242 . 2 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧}) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))))
1061053impia 1116 1 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wral 3059  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631  cop 4637   class class class wbr 5148   Fr wfr 5638  dom cdm 5689  cres 5691  Predcpred 6322  Fun wfun 6557   Fn wfn 6558  cfv 6563  (class class class)co 7431  frecscfrecs 8304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-id 5583  df-fr 5641  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-ov 7434  df-frecs 8305
This theorem is referenced by:  frrlem13  8322
  Copyright terms: Public domain W3C validator