Proof of Theorem cdlemefrs29cpre1
| Step | Hyp | Ref
| Expression |
| 1 | | cdlemefrs27.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | cdlemefrs27.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
| 3 | | cdlemefrs27.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
| 4 | | cdlemefrs27.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
| 5 | | cdlemefrs27.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | | cdlemefrs27.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | cdlemefrs27.eq |
. . 3
⊢ (𝑠 = 𝑅 → (𝜑 ↔ 𝜓)) |
| 8 | | cdlemefrs27.nb |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ 𝜑))) → 𝑁 ∈ 𝐵) |
| 9 | | cdlemefrs27.rnb |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cdlemefrs29bpre1 40399 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → ∃𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)))) |
| 11 | | simp11 1204 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 12 | | simp2rl 1243 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → 𝑅 ∈ 𝐴) |
| 13 | 1, 5 | atbase 39290 |
. . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) |
| 14 | 12, 13 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → 𝑅 ∈ 𝐵) |
| 15 | | simp2rr 1244 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → ¬ 𝑅 ≤ 𝑊) |
| 16 | 1, 2, 3, 4, 5, 6 | lhpmcvr2 40026 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐵 ∧ ¬ 𝑅 ≤ 𝑊)) → ∃𝑠 ∈ 𝐴 (¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅)) |
| 17 | 11, 14, 15, 16 | syl12anc 837 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → ∃𝑠 ∈ 𝐴 (¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅)) |
| 18 | | simpl3 1194 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → 𝜓) |
| 19 | 7 | pm5.32ri 575 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 = 𝑅) ↔ (𝜓 ∧ 𝑠 = 𝑅)) |
| 20 | 19 | baibr 536 |
. . . . . . . . 9
⊢ (𝜓 → (𝑠 = 𝑅 ↔ (𝜑 ∧ 𝑠 = 𝑅))) |
| 21 | 18, 20 | syl 17 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → (𝑠 = 𝑅 ↔ (𝜑 ∧ 𝑠 = 𝑅))) |
| 22 | | simp2r 1201 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
| 23 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 24 | 2, 4, 23, 5, 6 | lhpmat 40032 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
| 25 | 11, 22, 24 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) |
| 27 | 26 | oveq2d 7447 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → (𝑠 ∨ (𝑅 ∧ 𝑊)) = (𝑠 ∨ (0.‘𝐾))) |
| 28 | | simp11l 1285 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → 𝐾 ∈ HL) |
| 29 | | hlol 39362 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → 𝐾 ∈ OL) |
| 31 | 1, 5 | atbase 39290 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝐴 → 𝑠 ∈ 𝐵) |
| 32 | 1, 3, 23 | olj01 39226 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OL ∧ 𝑠 ∈ 𝐵) → (𝑠 ∨ (0.‘𝐾)) = 𝑠) |
| 33 | 30, 31, 32 | syl2an 596 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → (𝑠 ∨ (0.‘𝐾)) = 𝑠) |
| 34 | 27, 33 | eqtrd 2777 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑠) |
| 35 | 34 | eqeq1d 2739 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → ((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 ↔ 𝑠 = 𝑅)) |
| 36 | 35 | anbi2d 630 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → ((𝜑 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) ↔ (𝜑 ∧ 𝑠 = 𝑅))) |
| 37 | 21, 35, 36 | 3bitr4d 311 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → ((𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅 ↔ (𝜑 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅))) |
| 38 | 37 | anbi2d 630 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) ↔ (¬ 𝑠 ≤ 𝑊 ∧ (𝜑 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅)))) |
| 39 | | anass 468 |
. . . . . 6
⊢ (((¬
𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) ↔ (¬ 𝑠 ≤ 𝑊 ∧ (𝜑 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅))) |
| 40 | 38, 39 | bitr4di 289 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) ∧ 𝑠 ∈ 𝐴) → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) ↔ ((¬ 𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅))) |
| 41 | 40 | rexbidva 3177 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → (∃𝑠 ∈ 𝐴 (¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) ↔ ∃𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅))) |
| 42 | 17, 41 | mpbid 232 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → ∃𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅)) |
| 43 | | reusv1 5397 |
. . 3
⊢
(∃𝑠 ∈
𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → (∃!𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ ∃𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))))) |
| 44 | 42, 43 | syl 17 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → (∃!𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))) ↔ ∃𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊))))) |
| 45 | 10, 44 | mpbird 257 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → ∃!𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ 𝜑) ∧ (𝑠 ∨ (𝑅 ∧ 𝑊)) = 𝑅) → 𝑧 = (𝑁 ∨ (𝑅 ∧ 𝑊)))) |