Step | Hyp | Ref
| Expression |
1 | | cdleme24.b |
. . 3
β’ π΅ = (BaseβπΎ) |
2 | | cdleme24.l |
. . 3
β’ β€ =
(leβπΎ) |
3 | | cdleme24.j |
. . 3
β’ β¨ =
(joinβπΎ) |
4 | | cdleme24.m |
. . 3
β’ β§ =
(meetβπΎ) |
5 | | cdleme24.a |
. . 3
β’ π΄ = (AtomsβπΎ) |
6 | | cdleme24.h |
. . 3
β’ π» = (LHypβπΎ) |
7 | | cdleme24.u |
. . 3
β’ π = ((π β¨ π) β§ π) |
8 | | cdleme24.f |
. . 3
β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) |
9 | | cdleme24.n |
. . 3
β’ π = ((π β¨ π) β§ (πΉ β¨ ((π
β¨ π ) β§ π))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cdleme25b 38846 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π β§ π
β€ (π β¨ π))) β βπ’ β π΅ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ (π β¨ π)) β π’ = π)) |
11 | | simp11l 1285 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π β§ π
β€ (π β¨ π))) β πΎ β HL) |
12 | | simp11r 1286 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π β§ π
β€ (π β¨ π))) β π β π») |
13 | | simp12 1205 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π β§ π
β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
14 | | simp13 1206 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π β§ π
β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
15 | | simp3l 1202 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π β§ π
β€ (π β¨ π))) β π β π) |
16 | 2, 3, 5, 6 | cdlemb2 38533 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π) β βπ β π΄ (Β¬ π β€ π β§ Β¬ π β€ (π β¨ π))) |
17 | 11, 12, 13, 14, 15, 16 | syl221anc 1382 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π β§ π
β€ (π β¨ π))) β βπ β π΄ (Β¬ π β€ π β§ Β¬ π β€ (π β¨ π))) |
18 | | reusv1 5357 |
. . 3
β’
(βπ β
π΄ (Β¬ π β€ π β§ Β¬ π β€ (π β¨ π)) β (β!π’ β π΅ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ (π β¨ π)) β π’ = π) β βπ’ β π΅ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ (π β¨ π)) β π’ = π))) |
19 | 17, 18 | syl 17 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π β§ π
β€ (π β¨ π))) β (β!π’ β π΅ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ (π β¨ π)) β π’ = π) β βπ’ β π΅ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ (π β¨ π)) β π’ = π))) |
20 | 10, 19 | mpbird 257 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π β§ π
β€ (π β¨ π))) β β!π’ β π΅ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ (π β¨ π)) β π’ = π)) |