| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexiunxp | Structured version Visualization version GIF version | ||
| Description: Write a double restricted quantification as one universal quantifier. In this version of rexxp 5781, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexiunxp | ⊢ (∃𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxp.1 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | raliunxp 5778 | . . . 4 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ¬ 𝜓) |
| 4 | ralnex 3058 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∃𝑧 ∈ 𝐵 𝜓) | |
| 5 | 4 | ralbii 3078 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
| 6 | 3, 5 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
| 7 | 6 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
| 8 | dfrex2 3059 | . 2 ⊢ (∃𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ¬ ∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) ¬ 𝜑) | |
| 9 | dfrex2 3059 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∀wral 3047 ∃wrex 3056 {csn 4573 〈cop 4579 ∪ ciun 4939 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-iun 4941 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: rexxp 5781 fsumvma 27151 cvmliftlem15 35342 filnetlem4 36425 |
| Copyright terms: Public domain | W3C validator |