MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexiunxp Structured version   Visualization version   GIF version

Theorem rexiunxp 5804
Description: Write a double restricted quantification as one universal quantifier. In this version of rexxp 5806, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
rexiunxp (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝐵(𝑦)

Proof of Theorem rexiunxp
StepHypRef Expression
1 ralxp.1 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
21notbid 318 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → (¬ 𝜑 ↔ ¬ 𝜓))
32raliunxp 5803 . . . 4 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ∀𝑦𝐴𝑧𝐵 ¬ 𝜓)
4 ralnex 3055 . . . . 5 (∀𝑧𝐵 ¬ 𝜓 ↔ ¬ ∃𝑧𝐵 𝜓)
54ralbii 3075 . . . 4 (∀𝑦𝐴𝑧𝐵 ¬ 𝜓 ↔ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
63, 5bitri 275 . . 3 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
76notbii 320 . 2 (¬ ∀𝑥 𝑦𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ¬ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
8 dfrex2 3056 . 2 (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ¬ ∀𝑥 𝑦𝐴 ({𝑦} × 𝐵) ¬ 𝜑)
9 dfrex2 3056 . 2 (∃𝑦𝐴𝑧𝐵 𝜓 ↔ ¬ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
107, 8, 93bitr4i 303 1 (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wral 3044  wrex 3053  {csn 4589  cop 4595   ciun 4955   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-iun 4957  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by:  rexxp  5806  fsumvma  27124  cvmliftlem15  35285  filnetlem4  36369
  Copyright terms: Public domain W3C validator