MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexiunxp Structured version   Visualization version   GIF version

Theorem rexiunxp 5748
Description: Write a double restricted quantification as one universal quantifier. In this version of rexxp 5750, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
rexiunxp (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝐵(𝑦)

Proof of Theorem rexiunxp
StepHypRef Expression
1 ralxp.1 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
21notbid 318 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → (¬ 𝜑 ↔ ¬ 𝜓))
32raliunxp 5747 . . . 4 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ∀𝑦𝐴𝑧𝐵 ¬ 𝜓)
4 ralnex 3166 . . . . 5 (∀𝑧𝐵 ¬ 𝜓 ↔ ¬ ∃𝑧𝐵 𝜓)
54ralbii 3093 . . . 4 (∀𝑦𝐴𝑧𝐵 ¬ 𝜓 ↔ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
63, 5bitri 274 . . 3 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
76notbii 320 . 2 (¬ ∀𝑥 𝑦𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ¬ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
8 dfrex2 3169 . 2 (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ¬ ∀𝑥 𝑦𝐴 ({𝑦} × 𝐵) ¬ 𝜑)
9 dfrex2 3169 . 2 (∃𝑦𝐴𝑧𝐵 𝜓 ↔ ¬ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
107, 8, 93bitr4i 303 1 (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1542  wral 3066  wrex 3067  {csn 4567  cop 4573   ciun 4930   × cxp 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-iun 4932  df-opab 5142  df-xp 5596  df-rel 5597
This theorem is referenced by:  rexxp  5750  fsumvma  26372  cvmliftlem15  33269  filnetlem4  34579
  Copyright terms: Public domain W3C validator