Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version |
Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 5650 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
2 | 1 | raleqi 3337 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
4 | 3 | raliunxp 5737 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
5 | 2, 4 | bitr3i 276 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∀wral 3063 {csn 4558 〈cop 4564 ∪ ciun 4921 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-iun 4923 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: ralxpf 5744 reu3op 6184 f1opr 7309 ffnov 7379 eqfnov 7381 funimassov 7427 f1stres 7828 f2ndres 7829 ecopover 8568 xpf1o 8875 xpwdomg 9274 rankxplim 9568 imasaddfnlem 17156 imasvscafn 17165 comfeq 17332 isssc 17449 isfuncd 17496 cofucl 17519 funcres2b 17528 evlfcl 17856 uncfcurf 17873 yonedalem3 17914 yonedainv 17915 efgval2 19245 srgfcl 19666 txbas 22626 hausdiag 22704 tx1stc 22709 txkgen 22711 xkococn 22719 cnmpt21 22730 xkoinjcn 22746 tmdcn2 23148 clssubg 23168 qustgplem 23180 txmetcnp 23609 txmetcn 23610 qtopbaslem 23828 bndth 24027 cxpcn3 25806 dvdsmulf1o 26248 fsumdvdsmul 26249 xrofsup 30992 txpconn 33094 cvmlift2lem1 33164 cvmlift2lem12 33176 mclsax 33431 ismtyhmeolem 35889 dih1dimatlem 39270 ffnaov 44578 ovn0ssdmfun 45209 plusfreseq 45214 funcf2lem 46187 |
Copyright terms: Public domain | W3C validator |