Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version |
Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 5660 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
2 | 1 | raleqi 3347 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
4 | 3 | raliunxp 5751 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
5 | 2, 4 | bitr3i 276 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∀wral 3065 {csn 4562 〈cop 4568 ∪ ciun 4925 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-iun 4927 df-opab 5138 df-xp 5596 df-rel 5597 |
This theorem is referenced by: ralxpf 5758 reu3op 6199 f1opr 7340 ffnov 7410 eqfnov 7412 funimassov 7458 f1stres 7864 f2ndres 7865 ecopover 8619 xpf1o 8935 xpwdomg 9353 rankxplim 9646 imasaddfnlem 17248 imasvscafn 17257 comfeq 17424 isssc 17541 isfuncd 17589 cofucl 17612 funcres2b 17621 evlfcl 17949 uncfcurf 17966 yonedalem3 18007 yonedainv 18008 efgval2 19339 srgfcl 19760 txbas 22727 hausdiag 22805 tx1stc 22810 txkgen 22812 xkococn 22820 cnmpt21 22831 xkoinjcn 22847 tmdcn2 23249 clssubg 23269 qustgplem 23281 txmetcnp 23712 txmetcn 23713 qtopbaslem 23931 bndth 24130 cxpcn3 25910 dvdsmulf1o 26352 fsumdvdsmul 26353 xrofsup 31099 txpconn 33203 cvmlift2lem1 33273 cvmlift2lem12 33285 mclsax 33540 ismtyhmeolem 35971 dih1dimatlem 39350 ffnaov 44702 ovn0ssdmfun 45332 plusfreseq 45337 funcf2lem 46310 |
Copyright terms: Public domain | W3C validator |