MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp Structured version   Visualization version   GIF version

Theorem ralxp 5787
Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxp (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem ralxp
StepHypRef Expression
1 iunxpconst 5694 . . 3 𝑦𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵)
21raleqi 3291 . 2 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑)
3 ralxp.1 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
43raliunxp 5785 . 2 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
52, 4bitr3i 277 1 (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wral 3048  {csn 4577  cop 4583   ciun 4943   × cxp 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-iun 4945  df-opab 5158  df-xp 5627  df-rel 5628
This theorem is referenced by:  ralxpf  5792  reu3op  6246  f1opr  7410  ffnov  7480  eqfnov  7483  funimassov  7531  f1stres  7953  f2ndres  7954  naddf  8604  ecopover  8753  xpf1o  9061  xpwdomg  9480  rankxplim  9781  imasaddfnlem  17436  imasvscafn  17445  comfeq  17616  isssc  17731  isfuncd  17776  cofucl  17799  funcres2b  17808  evlfcl  18132  uncfcurf  18149  yonedalem3  18190  yonedainv  18191  efgval2  19640  srgfcl  20118  txbas  23485  hausdiag  23563  tx1stc  23568  txkgen  23570  xkococn  23578  cnmpt21  23589  xkoinjcn  23605  tmdcn2  24007  clssubg  24027  qustgplem  24039  txmetcnp  24465  txmetcn  24466  qtopbaslem  24676  bndth  24887  cxpcn3  26688  mpodvdsmulf1o  27134  fsumdvdsmul  27135  dvdsmulf1o  27136  fsumdvdsmulOLD  27137  addsf  27928  xrofsup  32756  txpconn  35299  cvmlift2lem1  35369  cvmlift2lem12  35381  mclsax  35636  ismtyhmeolem  37867  dih1dimatlem  41451  ffnaov  47326  ovn0ssdmfun  48286  plusfreseq  48291  funcf2lem  49209  imaidfu  49238  imasubc  49279  imassc  49281  fucofulem2  49439
  Copyright terms: Public domain W3C validator