| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version | ||
| Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5714 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | raleqi 3299 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
| 3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | raliunxp 5806 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| 5 | 2, 4 | bitr3i 277 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3045 {csn 4592 〈cop 4598 ∪ ciun 4958 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-iun 4960 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: ralxpf 5813 reu3op 6268 f1opr 7448 ffnov 7518 eqfnov 7521 funimassov 7569 f1stres 7995 f2ndres 7996 naddf 8648 ecopover 8797 xpf1o 9109 xpwdomg 9545 rankxplim 9839 imasaddfnlem 17498 imasvscafn 17507 comfeq 17674 isssc 17789 isfuncd 17834 cofucl 17857 funcres2b 17866 evlfcl 18190 uncfcurf 18207 yonedalem3 18248 yonedainv 18249 efgval2 19661 srgfcl 20112 txbas 23461 hausdiag 23539 tx1stc 23544 txkgen 23546 xkococn 23554 cnmpt21 23565 xkoinjcn 23581 tmdcn2 23983 clssubg 24003 qustgplem 24015 txmetcnp 24442 txmetcn 24443 qtopbaslem 24653 bndth 24864 cxpcn3 26665 mpodvdsmulf1o 27111 fsumdvdsmul 27112 dvdsmulf1o 27113 fsumdvdsmulOLD 27114 addsf 27896 xrofsup 32697 txpconn 35226 cvmlift2lem1 35296 cvmlift2lem12 35308 mclsax 35563 ismtyhmeolem 37805 dih1dimatlem 41330 ffnaov 47204 ovn0ssdmfun 48151 plusfreseq 48156 funcf2lem 49074 imaidfu 49103 imasubc 49144 imassc 49146 fucofulem2 49304 |
| Copyright terms: Public domain | W3C validator |