| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version | ||
| Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5689 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | raleqi 3290 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
| 3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | raliunxp 5779 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| 5 | 2, 4 | bitr3i 277 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∀wral 3047 {csn 4576 〈cop 4582 ∪ ciun 4941 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-iun 4943 df-opab 5154 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: ralxpf 5786 reu3op 6239 f1opr 7402 ffnov 7472 eqfnov 7475 funimassov 7523 f1stres 7945 f2ndres 7946 naddf 8596 ecopover 8745 xpf1o 9052 xpwdomg 9471 rankxplim 9772 imasaddfnlem 17432 imasvscafn 17441 comfeq 17612 isssc 17727 isfuncd 17772 cofucl 17795 funcres2b 17804 evlfcl 18128 uncfcurf 18145 yonedalem3 18186 yonedainv 18187 efgval2 19637 srgfcl 20115 txbas 23483 hausdiag 23561 tx1stc 23566 txkgen 23568 xkococn 23576 cnmpt21 23587 xkoinjcn 23603 tmdcn2 24005 clssubg 24025 qustgplem 24037 txmetcnp 24463 txmetcn 24464 qtopbaslem 24674 bndth 24885 cxpcn3 26686 mpodvdsmulf1o 27132 fsumdvdsmul 27133 dvdsmulf1o 27134 fsumdvdsmulOLD 27135 addsf 27926 xrofsup 32748 txpconn 35274 cvmlift2lem1 35344 cvmlift2lem12 35356 mclsax 35611 ismtyhmeolem 37850 dih1dimatlem 41374 ffnaov 47236 ovn0ssdmfun 48196 plusfreseq 48201 funcf2lem 49119 imaidfu 49148 imasubc 49189 imassc 49191 fucofulem2 49349 |
| Copyright terms: Public domain | W3C validator |