![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version |
Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 5772 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
2 | 1 | raleqi 3332 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
4 | 3 | raliunxp 5864 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
5 | 2, 4 | bitr3i 277 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∀wral 3067 {csn 4648 〈cop 4654 ∪ ciun 5015 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-iun 5017 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: ralxpf 5871 reu3op 6323 f1opr 7506 ffnov 7576 eqfnov 7579 funimassov 7627 f1stres 8054 f2ndres 8055 naddf 8737 ecopover 8879 xpf1o 9205 xpwdomg 9654 rankxplim 9948 imasaddfnlem 17588 imasvscafn 17597 comfeq 17764 isssc 17881 isfuncd 17929 cofucl 17952 funcres2b 17961 evlfcl 18292 uncfcurf 18309 yonedalem3 18350 yonedainv 18351 efgval2 19766 srgfcl 20223 txbas 23596 hausdiag 23674 tx1stc 23679 txkgen 23681 xkococn 23689 cnmpt21 23700 xkoinjcn 23716 tmdcn2 24118 clssubg 24138 qustgplem 24150 txmetcnp 24581 txmetcn 24582 qtopbaslem 24800 bndth 25009 cxpcn3 26809 mpodvdsmulf1o 27255 fsumdvdsmul 27256 dvdsmulf1o 27257 fsumdvdsmulOLD 27258 addsf 28033 xrofsup 32774 txpconn 35200 cvmlift2lem1 35270 cvmlift2lem12 35282 mclsax 35537 ismtyhmeolem 37764 dih1dimatlem 41286 ffnaov 47114 ovn0ssdmfun 47882 plusfreseq 47887 funcf2lem 48685 |
Copyright terms: Public domain | W3C validator |