Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version |
Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 5660 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
2 | 1 | raleqi 3345 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
4 | 3 | raliunxp 5747 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
5 | 2, 4 | bitr3i 276 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∀wral 3066 {csn 4567 〈cop 4573 ∪ ciun 4930 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-iun 4932 df-opab 5142 df-xp 5596 df-rel 5597 |
This theorem is referenced by: ralxpf 5754 reu3op 6194 f1opr 7325 ffnov 7395 eqfnov 7397 funimassov 7443 f1stres 7848 f2ndres 7849 ecopover 8593 xpf1o 8908 xpwdomg 9322 rankxplim 9638 imasaddfnlem 17237 imasvscafn 17246 comfeq 17413 isssc 17530 isfuncd 17578 cofucl 17601 funcres2b 17610 evlfcl 17938 uncfcurf 17955 yonedalem3 17996 yonedainv 17997 efgval2 19328 srgfcl 19749 txbas 22716 hausdiag 22794 tx1stc 22799 txkgen 22801 xkococn 22809 cnmpt21 22820 xkoinjcn 22836 tmdcn2 23238 clssubg 23258 qustgplem 23270 txmetcnp 23701 txmetcn 23702 qtopbaslem 23920 bndth 24119 cxpcn3 25899 dvdsmulf1o 26341 fsumdvdsmul 26342 xrofsup 31086 txpconn 33190 cvmlift2lem1 33260 cvmlift2lem12 33272 mclsax 33527 ismtyhmeolem 35958 dih1dimatlem 39339 ffnaov 44659 ovn0ssdmfun 45290 plusfreseq 45295 funcf2lem 46268 |
Copyright terms: Public domain | W3C validator |