| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version | ||
| Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5727 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | raleqi 3303 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
| 3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | raliunxp 5819 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| 5 | 2, 4 | bitr3i 277 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3051 {csn 4601 〈cop 4607 ∪ ciun 4967 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-iun 4969 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: ralxpf 5826 reu3op 6281 f1opr 7463 ffnov 7533 eqfnov 7536 funimassov 7584 f1stres 8012 f2ndres 8013 naddf 8693 ecopover 8835 xpf1o 9153 xpwdomg 9599 rankxplim 9893 imasaddfnlem 17542 imasvscafn 17551 comfeq 17718 isssc 17833 isfuncd 17878 cofucl 17901 funcres2b 17910 evlfcl 18234 uncfcurf 18251 yonedalem3 18292 yonedainv 18293 efgval2 19705 srgfcl 20156 txbas 23505 hausdiag 23583 tx1stc 23588 txkgen 23590 xkococn 23598 cnmpt21 23609 xkoinjcn 23625 tmdcn2 24027 clssubg 24047 qustgplem 24059 txmetcnp 24486 txmetcn 24487 qtopbaslem 24697 bndth 24908 cxpcn3 26710 mpodvdsmulf1o 27156 fsumdvdsmul 27157 dvdsmulf1o 27158 fsumdvdsmulOLD 27159 addsf 27941 xrofsup 32744 txpconn 35254 cvmlift2lem1 35324 cvmlift2lem12 35336 mclsax 35591 ismtyhmeolem 37828 dih1dimatlem 41348 ffnaov 47228 ovn0ssdmfun 48134 plusfreseq 48139 funcf2lem 49046 imaidfu 49069 imasubc 49091 imassc 49093 fucofulem2 49222 |
| Copyright terms: Public domain | W3C validator |