| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version | ||
| Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5711 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | raleqi 3297 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
| 3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | raliunxp 5803 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| 5 | 2, 4 | bitr3i 277 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 {csn 4589 〈cop 4595 ∪ ciun 4955 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-iun 4957 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: ralxpf 5810 reu3op 6265 f1opr 7445 ffnov 7515 eqfnov 7518 funimassov 7566 f1stres 7992 f2ndres 7993 naddf 8645 ecopover 8794 xpf1o 9103 xpwdomg 9538 rankxplim 9832 imasaddfnlem 17491 imasvscafn 17500 comfeq 17667 isssc 17782 isfuncd 17827 cofucl 17850 funcres2b 17859 evlfcl 18183 uncfcurf 18200 yonedalem3 18241 yonedainv 18242 efgval2 19654 srgfcl 20105 txbas 23454 hausdiag 23532 tx1stc 23537 txkgen 23539 xkococn 23547 cnmpt21 23558 xkoinjcn 23574 tmdcn2 23976 clssubg 23996 qustgplem 24008 txmetcnp 24435 txmetcn 24436 qtopbaslem 24646 bndth 24857 cxpcn3 26658 mpodvdsmulf1o 27104 fsumdvdsmul 27105 dvdsmulf1o 27106 fsumdvdsmulOLD 27107 addsf 27889 xrofsup 32690 txpconn 35219 cvmlift2lem1 35289 cvmlift2lem12 35301 mclsax 35556 ismtyhmeolem 37798 dih1dimatlem 41323 ffnaov 47200 ovn0ssdmfun 48147 plusfreseq 48152 funcf2lem 49070 imaidfu 49099 imasubc 49140 imassc 49142 fucofulem2 49300 |
| Copyright terms: Public domain | W3C validator |