| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version | ||
| Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5738 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | raleqi 3307 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
| 3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | raliunxp 5830 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| 5 | 2, 4 | bitr3i 277 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∀wral 3050 {csn 4606 〈cop 4612 ∪ ciun 4971 × cxp 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-iun 4973 df-opab 5186 df-xp 5671 df-rel 5672 |
| This theorem is referenced by: ralxpf 5837 reu3op 6292 f1opr 7471 ffnov 7541 eqfnov 7544 funimassov 7592 f1stres 8020 f2ndres 8021 naddf 8701 ecopover 8843 xpf1o 9161 xpwdomg 9607 rankxplim 9901 imasaddfnlem 17544 imasvscafn 17553 comfeq 17720 isssc 17835 isfuncd 17881 cofucl 17904 funcres2b 17913 evlfcl 18237 uncfcurf 18254 yonedalem3 18295 yonedainv 18296 efgval2 19710 srgfcl 20161 txbas 23521 hausdiag 23599 tx1stc 23604 txkgen 23606 xkococn 23614 cnmpt21 23625 xkoinjcn 23641 tmdcn2 24043 clssubg 24063 qustgplem 24075 txmetcnp 24504 txmetcn 24505 qtopbaslem 24715 bndth 24926 cxpcn3 26727 mpodvdsmulf1o 27173 fsumdvdsmul 27174 dvdsmulf1o 27175 fsumdvdsmulOLD 27176 addsf 27951 xrofsup 32708 txpconn 35196 cvmlift2lem1 35266 cvmlift2lem12 35278 mclsax 35533 ismtyhmeolem 37770 dih1dimatlem 41290 ffnaov 47169 ovn0ssdmfun 48033 plusfreseq 48038 funcf2lem 48883 fucofulem2 48982 |
| Copyright terms: Public domain | W3C validator |