| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version | ||
| Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5694 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | raleqi 3291 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
| 3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | raliunxp 5785 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| 5 | 2, 4 | bitr3i 277 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∀wral 3048 {csn 4577 〈cop 4583 ∪ ciun 4943 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-iun 4945 df-opab 5158 df-xp 5627 df-rel 5628 |
| This theorem is referenced by: ralxpf 5792 reu3op 6246 f1opr 7410 ffnov 7480 eqfnov 7483 funimassov 7531 f1stres 7953 f2ndres 7954 naddf 8604 ecopover 8753 xpf1o 9061 xpwdomg 9480 rankxplim 9781 imasaddfnlem 17436 imasvscafn 17445 comfeq 17616 isssc 17731 isfuncd 17776 cofucl 17799 funcres2b 17808 evlfcl 18132 uncfcurf 18149 yonedalem3 18190 yonedainv 18191 efgval2 19640 srgfcl 20118 txbas 23485 hausdiag 23563 tx1stc 23568 txkgen 23570 xkococn 23578 cnmpt21 23589 xkoinjcn 23605 tmdcn2 24007 clssubg 24027 qustgplem 24039 txmetcnp 24465 txmetcn 24466 qtopbaslem 24676 bndth 24887 cxpcn3 26688 mpodvdsmulf1o 27134 fsumdvdsmul 27135 dvdsmulf1o 27136 fsumdvdsmulOLD 27137 addsf 27928 xrofsup 32756 txpconn 35299 cvmlift2lem1 35369 cvmlift2lem12 35381 mclsax 35636 ismtyhmeolem 37867 dih1dimatlem 41451 ffnaov 47326 ovn0ssdmfun 48286 plusfreseq 48291 funcf2lem 49209 imaidfu 49238 imasubc 49279 imassc 49281 fucofulem2 49439 |
| Copyright terms: Public domain | W3C validator |