| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version | ||
| Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 5696 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
| 2 | 1 | raleqi 3288 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
| 3 | ralxp.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | raliunxp 5786 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| 5 | 2, 4 | bitr3i 277 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 {csn 4579 〈cop 4585 ∪ ciun 4944 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-iun 4946 df-opab 5158 df-xp 5629 df-rel 5630 |
| This theorem is referenced by: ralxpf 5793 reu3op 6244 f1opr 7409 ffnov 7479 eqfnov 7482 funimassov 7530 f1stres 7955 f2ndres 7956 naddf 8606 ecopover 8755 xpf1o 9063 xpwdomg 9496 rankxplim 9794 imasaddfnlem 17450 imasvscafn 17459 comfeq 17630 isssc 17745 isfuncd 17790 cofucl 17813 funcres2b 17822 evlfcl 18146 uncfcurf 18163 yonedalem3 18204 yonedainv 18205 efgval2 19621 srgfcl 20099 txbas 23470 hausdiag 23548 tx1stc 23553 txkgen 23555 xkococn 23563 cnmpt21 23574 xkoinjcn 23590 tmdcn2 23992 clssubg 24012 qustgplem 24024 txmetcnp 24451 txmetcn 24452 qtopbaslem 24662 bndth 24873 cxpcn3 26674 mpodvdsmulf1o 27120 fsumdvdsmul 27121 dvdsmulf1o 27122 fsumdvdsmulOLD 27123 addsf 27912 xrofsup 32723 txpconn 35207 cvmlift2lem1 35277 cvmlift2lem12 35289 mclsax 35544 ismtyhmeolem 37786 dih1dimatlem 41311 ffnaov 47187 ovn0ssdmfun 48147 plusfreseq 48152 funcf2lem 49070 imaidfu 49099 imasubc 49140 imassc 49142 fucofulem2 49300 |
| Copyright terms: Public domain | W3C validator |