![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralxp | Structured version Visualization version GIF version |
Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ralxp.1 | ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralxp | ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 5749 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵) | |
2 | 1 | raleqi 3324 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑) |
3 | ralxp.1 | . . 3 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ 𝜓)) | |
4 | 3 | raliunxp 5840 | . 2 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
5 | 2, 4 | bitr3i 277 | 1 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∀wral 3062 {csn 4629 ⟨cop 4635 ∪ ciun 4998 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-iun 5000 df-opab 5212 df-xp 5683 df-rel 5684 |
This theorem is referenced by: ralxpf 5847 reu3op 6292 f1opr 7465 ffnov 7535 eqfnov 7538 funimassov 7584 f1stres 7999 f2ndres 8000 naddf 8680 ecopover 8815 xpf1o 9139 xpwdomg 9580 rankxplim 9874 imasaddfnlem 17474 imasvscafn 17483 comfeq 17650 isssc 17767 isfuncd 17815 cofucl 17838 funcres2b 17847 evlfcl 18175 uncfcurf 18192 yonedalem3 18233 yonedainv 18234 efgval2 19592 srgfcl 20019 txbas 23071 hausdiag 23149 tx1stc 23154 txkgen 23156 xkococn 23164 cnmpt21 23175 xkoinjcn 23191 tmdcn2 23593 clssubg 23613 qustgplem 23625 txmetcnp 24056 txmetcn 24057 qtopbaslem 24275 bndth 24474 cxpcn3 26256 dvdsmulf1o 26698 fsumdvdsmul 26699 addsf 27466 xrofsup 31980 txpconn 34223 cvmlift2lem1 34293 cvmlift2lem12 34305 mclsax 34560 ismtyhmeolem 36672 dih1dimatlem 40200 ffnaov 45907 ovn0ssdmfun 46537 plusfreseq 46542 funcf2lem 47638 |
Copyright terms: Public domain | W3C validator |