MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp Structured version   Visualization version   GIF version

Theorem ralxp 5842
Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxp (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem ralxp
StepHypRef Expression
1 iunxpconst 5749 . . 3 𝑦𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵)
21raleqi 3324 . 2 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑)
3 ralxp.1 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
43raliunxp 5840 . 2 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
52, 4bitr3i 277 1 (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wral 3062  {csn 4629  cop 4635   ciun 4998   × cxp 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-iun 5000  df-opab 5212  df-xp 5683  df-rel 5684
This theorem is referenced by:  ralxpf  5847  reu3op  6292  f1opr  7465  ffnov  7535  eqfnov  7538  funimassov  7584  f1stres  7999  f2ndres  8000  naddf  8680  ecopover  8815  xpf1o  9139  xpwdomg  9580  rankxplim  9874  imasaddfnlem  17474  imasvscafn  17483  comfeq  17650  isssc  17767  isfuncd  17815  cofucl  17838  funcres2b  17847  evlfcl  18175  uncfcurf  18192  yonedalem3  18233  yonedainv  18234  efgval2  19592  srgfcl  20019  txbas  23071  hausdiag  23149  tx1stc  23154  txkgen  23156  xkococn  23164  cnmpt21  23175  xkoinjcn  23191  tmdcn2  23593  clssubg  23613  qustgplem  23625  txmetcnp  24056  txmetcn  24057  qtopbaslem  24275  bndth  24474  cxpcn3  26256  dvdsmulf1o  26698  fsumdvdsmul  26699  addsf  27466  xrofsup  31980  txpconn  34223  cvmlift2lem1  34293  cvmlift2lem12  34305  mclsax  34560  ismtyhmeolem  36672  dih1dimatlem  40200  ffnaov  45907  ovn0ssdmfun  46537  plusfreseq  46542  funcf2lem  47638
  Copyright terms: Public domain W3C validator