MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp Structured version   Visualization version   GIF version

Theorem ralxp 5739
Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxp (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem ralxp
StepHypRef Expression
1 iunxpconst 5650 . . 3 𝑦𝐴 ({𝑦} × 𝐵) = (𝐴 × 𝐵)
21raleqi 3337 . 2 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥 ∈ (𝐴 × 𝐵)𝜑)
3 ralxp.1 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
43raliunxp 5737 . 2 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
52, 4bitr3i 276 1 (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wral 3063  {csn 4558  cop 4564   ciun 4921   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-iun 4923  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by:  ralxpf  5744  reu3op  6184  f1opr  7309  ffnov  7379  eqfnov  7381  funimassov  7427  f1stres  7828  f2ndres  7829  ecopover  8568  xpf1o  8875  xpwdomg  9274  rankxplim  9568  imasaddfnlem  17156  imasvscafn  17165  comfeq  17332  isssc  17449  isfuncd  17496  cofucl  17519  funcres2b  17528  evlfcl  17856  uncfcurf  17873  yonedalem3  17914  yonedainv  17915  efgval2  19245  srgfcl  19666  txbas  22626  hausdiag  22704  tx1stc  22709  txkgen  22711  xkococn  22719  cnmpt21  22730  xkoinjcn  22746  tmdcn2  23148  clssubg  23168  qustgplem  23180  txmetcnp  23609  txmetcn  23610  qtopbaslem  23828  bndth  24027  cxpcn3  25806  dvdsmulf1o  26248  fsumdvdsmul  26249  xrofsup  30992  txpconn  33094  cvmlift2lem1  33164  cvmlift2lem12  33176  mclsax  33431  ismtyhmeolem  35889  dih1dimatlem  39270  ffnaov  44578  ovn0ssdmfun  45209  plusfreseq  45214  funcf2lem  46187
  Copyright terms: Public domain W3C validator