Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkuv2 Structured version   Visualization version   GIF version

Theorem cdlemkuv2 40824
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 16 on p. 119 for i = 1, where sigma1 (p) is 𝑈, f1 is 𝐷, and k1 is 𝑂. (Contributed by NM, 2-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b 𝐵 = (Base‘𝐾)
cdlemk1.l = (le‘𝐾)
cdlemk1.j = (join‘𝐾)
cdlemk1.m = (meet‘𝐾)
cdlemk1.a 𝐴 = (Atoms‘𝐾)
cdlemk1.h 𝐻 = (LHyp‘𝐾)
cdlemk1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk1.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk1.o 𝑂 = (𝑆𝐷)
cdlemk1.u 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
Assertion
Ref Expression
cdlemkuv2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐷,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑒   ,𝑒   𝐷,𝑒,𝑗   𝑒,𝐺,𝑗   𝑒,𝑂   𝑃,𝑒   𝑅,𝑒   𝑇,𝑒   𝑒,𝑊   ,𝑗   ,𝑗   ,𝑗   𝐴,𝑗   𝐷,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑗,𝑂   𝑃,𝑗   𝑅,𝑗   𝑇,𝑗   𝑗,𝑊
Allowed substitution hints:   𝐴(𝑒,𝑓)   𝐵(𝑒,𝑓,𝑖,𝑗)   𝑆(𝑒,𝑓,𝑖,𝑗)   𝑈(𝑒,𝑓,𝑖,𝑗)   𝐹(𝑒)   𝐺(𝑓,𝑖)   𝐻(𝑒,𝑓)   𝐾(𝑒,𝑓)   (𝑒,𝑓)   𝑁(𝑒)   𝑂(𝑓,𝑖)

Proof of Theorem cdlemkuv2
StepHypRef Expression
1 simp13 1205 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐺𝑇)
2 cdlemk1.b . . . . 5 𝐵 = (Base‘𝐾)
3 cdlemk1.l . . . . 5 = (le‘𝐾)
4 cdlemk1.j . . . . 5 = (join‘𝐾)
5 cdlemk1.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 cdlemk1.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 cdlemk1.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemk1.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
9 cdlemk1.m . . . . 5 = (meet‘𝐾)
10 cdlemk1.u . . . . 5 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
112, 3, 4, 5, 6, 7, 8, 9, 10cdlemksv 40801 . . . 4 (𝐺𝑇 → (𝑈𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))))
121, 11syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑈𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))))
1312eqcomd 2746 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))) = (𝑈𝐺))
14 cdlemk1.s . . . 4 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
15 cdlemk1.o . . . 4 𝑂 = (𝑆𝐷)
162, 3, 4, 9, 5, 6, 7, 8, 14, 15, 10cdlemkuel 40822 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑈𝐺) ∈ 𝑇)
17 simp11l 1284 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐾 ∈ HL)
18 simp11r 1285 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑊𝐻)
19 simp33 1211 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
202, 3, 4, 9, 5, 6, 7, 8, 14, 15cdlemk16a 40813 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) 𝑊))
213, 5, 6, 7cdleme 40517 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) 𝑊)) → ∃!𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))))
2217, 18, 19, 20, 21syl211anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ∃!𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))))
23 nfcv 2908 . . . . . . 7 𝑗𝑇
24 nfriota1 7411 . . . . . . 7 𝑗(𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷)))))
2523, 24nfmpt 5273 . . . . . 6 𝑗(𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
2610, 25nfcxfr 2906 . . . . 5 𝑗𝑈
27 nfcv 2908 . . . . 5 𝑗𝐺
2826, 27nffv 6930 . . . 4 𝑗(𝑈𝐺)
29 nfcv 2908 . . . . . 6 𝑗𝑃
3028, 29nffv 6930 . . . . 5 𝑗((𝑈𝐺)‘𝑃)
3130nfeq1 2924 . . . 4 𝑗((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))
32 fveq1 6919 . . . . 5 (𝑗 = (𝑈𝐺) → (𝑗𝑃) = ((𝑈𝐺)‘𝑃))
3332eqeq1d 2742 . . . 4 (𝑗 = (𝑈𝐺) → ((𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) ↔ ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))))
3428, 31, 33riota2f 7429 . . 3 (((𝑈𝐺) ∈ 𝑇 ∧ ∃!𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))) → (((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) ↔ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))) = (𝑈𝐺)))
3516, 22, 34syl2anc 583 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) ↔ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))) = (𝑈𝐺)))
3613, 35mpbird 257 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  ∃!wreu 3386   class class class wbr 5166  cmpt 5249   I cid 5592  ccnv 5699  cres 5702  ccom 5704  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116
This theorem is referenced by:  cdlemk18  40825  cdlemk7u  40827  cdlemk12u  40829  cdlemk21N  40830  cdlemk20  40831  cdlemkuv2-2  40842  cdlemk31  40853  cdlemkuv2-3N  40856
  Copyright terms: Public domain W3C validator