Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version |
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | riota2f 7237 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃!wreu 3065 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: eqsup 9145 sup0 9155 fin23lem22 10014 subadd 11154 divmul 11566 fllelt 13445 flflp1 13455 flval2 13462 flbi 13464 remim 14756 resqrtcl 14893 resqrtthlem 14894 sqrtneg 14907 sqrtthlem 15002 divalgmod 16043 qnumdenbi 16376 catidd 17306 lubprop 17991 glbprop 18004 poslubd 18046 isglbd 18142 ismgmid 18264 isgrpinv 18547 pj1id 19220 coeeq 25293 ismir 26924 mireq 26930 ismidb 27043 islmib 27052 usgredg2vlem2 27496 frgrncvvdeqlem3 28566 frgr2wwlkeqm 28596 cnidOLD 28845 hilid 29424 pjpreeq 29661 cnvbraval 30373 cdj3lem2 30698 xdivmul 31101 cvmliftphtlem 33179 cvmlift3lem4 33184 cvmlift3lem6 33186 cvmlift3lem9 33189 ttrcltr 33702 scutbday 33925 eqscut 33926 scutun12 33931 scutbdaylt 33939 transportprops 34263 ltflcei 35692 cmpidelt 35944 exidresid 35964 lshpkrlem1 37051 cdlemeiota 38526 dochfl1 39417 hgmapvs 39832 evlsval3 40195 fsuppind 40202 renegadd 40276 resubadd 40283 addinvcom 40334 wessf1ornlem 42611 fourierdlem50 43587 |
Copyright terms: Public domain | W3C validator |