| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version | ||
| Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | riota2f 7350 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3349 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-reu 3352 df-v 3446 df-un 3916 df-ss 3928 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: eqsup 9383 sup0 9394 ttrcltr 9647 fin23lem22 10258 subadd 11402 divmul 11818 fllelt 13737 flflp1 13747 flval2 13754 flbi 13756 remim 15060 resqrtcl 15196 resqrtthlem 15197 sqrtneg 15210 sqrtthlem 15306 divalgmod 16353 qnumdenbi 16691 catidd 17622 lubprop 18298 glbprop 18311 poslubd 18353 isglbd 18451 ismgmid 18575 isgrpinv 18908 pj1id 19614 coeeq 26166 scutbday 27751 eqscut 27752 scutun12 27757 scutbdaylt 27765 divsmulw 28137 ismir 28640 mireq 28646 ismidb 28759 islmib 28768 usgredg2vlem2 29207 frgrncvvdeqlem3 30281 frgr2wwlkeqm 30311 cnidOLD 30562 hilid 31141 pjpreeq 31378 cnvbraval 32090 cdj3lem2 32415 xdivmul 32896 cvmliftphtlem 35298 cvmlift3lem4 35303 cvmlift3lem6 35305 cvmlift3lem9 35308 transportprops 36016 ltflcei 37596 cmpidelt 37847 exidresid 37867 lshpkrlem1 39097 cdlemeiota 40573 dochfl1 41464 hgmapvs 41879 renegadd 42354 resubadd 42361 addinvcom 42414 redivmuld 42427 evlsval3 42541 fsuppind 42572 wessf1ornlem 45173 fourierdlem50 46148 |
| Copyright terms: Public domain | W3C validator |