![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version |
Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | nfv 1912 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | riota2f 7412 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃!wreu 3376 ℩crio 7387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-reu 3379 df-v 3480 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 df-riota 7388 |
This theorem is referenced by: eqsup 9494 sup0 9504 ttrcltr 9754 fin23lem22 10365 subadd 11509 divmul 11923 fllelt 13834 flflp1 13844 flval2 13851 flbi 13853 remim 15153 resqrtcl 15289 resqrtthlem 15290 sqrtneg 15303 sqrtthlem 15398 divalgmod 16440 qnumdenbi 16778 catidd 17725 lubprop 18416 glbprop 18429 poslubd 18471 isglbd 18567 ismgmid 18691 isgrpinv 19024 pj1id 19732 coeeq 26281 scutbday 27864 eqscut 27865 scutun12 27870 scutbdaylt 27878 divsmulw 28233 ismir 28682 mireq 28688 ismidb 28801 islmib 28810 usgredg2vlem2 29258 frgrncvvdeqlem3 30330 frgr2wwlkeqm 30360 cnidOLD 30611 hilid 31190 pjpreeq 31427 cnvbraval 32139 cdj3lem2 32464 xdivmul 32892 cvmliftphtlem 35302 cvmlift3lem4 35307 cvmlift3lem6 35309 cvmlift3lem9 35312 transportprops 36016 ltflcei 37595 cmpidelt 37846 exidresid 37866 lshpkrlem1 39092 cdlemeiota 40568 dochfl1 41459 hgmapvs 41874 renegadd 42379 resubadd 42386 addinvcom 42438 evlsval3 42546 fsuppind 42577 wessf1ornlem 45128 fourierdlem50 46112 |
Copyright terms: Public domain | W3C validator |