Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version |
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2920 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | nfv 1916 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | riota2f 7133 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∃!wreu 3073 ℩crio 7108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-reu 3078 df-v 3412 df-sbc 3698 df-un 3864 df-in 3866 df-ss 3876 df-sn 4524 df-pr 4526 df-uni 4800 df-iota 6295 df-riota 7109 |
This theorem is referenced by: eqsup 8954 sup0 8964 fin23lem22 9788 subadd 10928 divmul 11340 fllelt 13217 flflp1 13227 flval2 13234 flbi 13236 remim 14525 resqrtcl 14662 resqrtthlem 14663 sqrtneg 14676 sqrtthlem 14771 divalgmod 15808 qnumdenbi 16140 catidd 17010 lubprop 17663 glbprop 17676 isglbd 17794 poslubd 17825 ismgmid 17942 isgrpinv 18224 pj1id 18893 coeeq 24924 ismir 26553 mireq 26559 ismidb 26672 islmib 26681 usgredg2vlem2 27116 frgrncvvdeqlem3 28186 frgr2wwlkeqm 28216 cnidOLD 28465 hilid 29044 pjpreeq 29281 cnvbraval 29993 cdj3lem2 30318 xdivmul 30724 cvmliftphtlem 32796 cvmlift3lem4 32801 cvmlift3lem6 32803 cvmlift3lem9 32806 scutbday 33560 eqscut 33561 scutun12 33566 scutbdaylt 33574 transportprops 33886 ltflcei 35326 cmpidelt 35578 exidresid 35598 lshpkrlem1 36687 cdlemeiota 38162 dochfl1 39053 hgmapvs 39468 evlsval3 39778 fsuppind 39785 renegadd 39853 resubadd 39860 addinvcom 39911 wessf1ornlem 42182 fourierdlem50 43165 |
Copyright terms: Public domain | W3C validator |