| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version | ||
| Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | riota2f 7330 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3341 ℩crio 7305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-reu 3344 df-v 3438 df-un 3908 df-ss 3920 df-sn 4578 df-pr 4580 df-uni 4859 df-iota 6438 df-riota 7306 |
| This theorem is referenced by: eqsup 9346 sup0 9357 ttrcltr 9612 fin23lem22 10221 subadd 11366 divmul 11782 fllelt 13701 flflp1 13711 flval2 13718 flbi 13720 remim 15024 resqrtcl 15160 resqrtthlem 15161 sqrtneg 15174 sqrtthlem 15270 divalgmod 16317 qnumdenbi 16655 catidd 17586 lubprop 18262 glbprop 18275 poslubd 18317 isglbd 18415 ismgmid 18539 isgrpinv 18872 pj1id 19578 coeeq 26130 scutbday 27716 eqscut 27717 scutun12 27722 scutbdaylt 27730 divsmulw 28103 ismir 28608 mireq 28614 ismidb 28727 islmib 28736 usgredg2vlem2 29175 frgrncvvdeqlem3 30249 frgr2wwlkeqm 30279 cnidOLD 30530 hilid 31109 pjpreeq 31346 cnvbraval 32058 cdj3lem2 32383 xdivmul 32874 cvmliftphtlem 35310 cvmlift3lem4 35315 cvmlift3lem6 35317 cvmlift3lem9 35320 transportprops 36028 ltflcei 37608 cmpidelt 37859 exidresid 37879 lshpkrlem1 39109 cdlemeiota 40584 dochfl1 41475 hgmapvs 41890 renegadd 42365 resubadd 42372 addinvcom 42425 redivmuld 42438 evlsval3 42552 fsuppind 42583 wessf1ornlem 45183 fourierdlem50 46157 |
| Copyright terms: Public domain | W3C validator |