| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version | ||
| Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | riota2f 7386 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃!wreu 3357 ℩crio 7361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-reu 3360 df-v 3461 df-un 3931 df-ss 3943 df-sn 4602 df-pr 4604 df-uni 4884 df-iota 6484 df-riota 7362 |
| This theorem is referenced by: eqsup 9468 sup0 9479 ttrcltr 9730 fin23lem22 10341 subadd 11485 divmul 11899 fllelt 13814 flflp1 13824 flval2 13831 flbi 13833 remim 15136 resqrtcl 15272 resqrtthlem 15273 sqrtneg 15286 sqrtthlem 15381 divalgmod 16425 qnumdenbi 16763 catidd 17692 lubprop 18368 glbprop 18381 poslubd 18423 isglbd 18519 ismgmid 18643 isgrpinv 18976 pj1id 19680 coeeq 26184 scutbday 27768 eqscut 27769 scutun12 27774 scutbdaylt 27782 divsmulw 28148 ismir 28638 mireq 28644 ismidb 28757 islmib 28766 usgredg2vlem2 29205 frgrncvvdeqlem3 30282 frgr2wwlkeqm 30312 cnidOLD 30563 hilid 31142 pjpreeq 31379 cnvbraval 32091 cdj3lem2 32416 xdivmul 32899 cvmliftphtlem 35339 cvmlift3lem4 35344 cvmlift3lem6 35346 cvmlift3lem9 35349 transportprops 36052 ltflcei 37632 cmpidelt 37883 exidresid 37903 lshpkrlem1 39128 cdlemeiota 40604 dochfl1 41495 hgmapvs 41910 renegadd 42415 resubadd 42422 addinvcom 42474 evlsval3 42582 fsuppind 42613 wessf1ornlem 45209 fourierdlem50 46185 |
| Copyright terms: Public domain | W3C validator |