| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version | ||
| Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | riota2f 7368 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3352 ℩crio 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-reu 3355 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 df-riota 7344 |
| This theorem is referenced by: eqsup 9407 sup0 9418 ttrcltr 9669 fin23lem22 10280 subadd 11424 divmul 11840 fllelt 13759 flflp1 13769 flval2 13776 flbi 13778 remim 15083 resqrtcl 15219 resqrtthlem 15220 sqrtneg 15233 sqrtthlem 15329 divalgmod 16376 qnumdenbi 16714 catidd 17641 lubprop 18317 glbprop 18330 poslubd 18372 isglbd 18468 ismgmid 18592 isgrpinv 18925 pj1id 19629 coeeq 26132 scutbday 27716 eqscut 27717 scutun12 27722 scutbdaylt 27730 divsmulw 28096 ismir 28586 mireq 28592 ismidb 28705 islmib 28714 usgredg2vlem2 29153 frgrncvvdeqlem3 30230 frgr2wwlkeqm 30260 cnidOLD 30511 hilid 31090 pjpreeq 31327 cnvbraval 32039 cdj3lem2 32364 xdivmul 32845 cvmliftphtlem 35304 cvmlift3lem4 35309 cvmlift3lem6 35311 cvmlift3lem9 35314 transportprops 36022 ltflcei 37602 cmpidelt 37853 exidresid 37873 lshpkrlem1 39103 cdlemeiota 40579 dochfl1 41470 hgmapvs 41885 renegadd 42360 resubadd 42367 addinvcom 42420 redivmuld 42433 evlsval3 42547 fsuppind 42578 wessf1ornlem 45179 fourierdlem50 46154 |
| Copyright terms: Public domain | W3C validator |