| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version | ||
| Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | riota2f 7350 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3349 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-reu 3352 df-v 3446 df-un 3916 df-ss 3928 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: eqsup 9383 sup0 9394 ttrcltr 9645 fin23lem22 10256 subadd 11400 divmul 11816 fllelt 13735 flflp1 13745 flval2 13752 flbi 13754 remim 15059 resqrtcl 15195 resqrtthlem 15196 sqrtneg 15209 sqrtthlem 15305 divalgmod 16352 qnumdenbi 16690 catidd 17621 lubprop 18297 glbprop 18310 poslubd 18352 isglbd 18450 ismgmid 18574 isgrpinv 18907 pj1id 19613 coeeq 26165 scutbday 27750 eqscut 27751 scutun12 27756 scutbdaylt 27764 divsmulw 28136 ismir 28639 mireq 28645 ismidb 28758 islmib 28767 usgredg2vlem2 29206 frgrncvvdeqlem3 30280 frgr2wwlkeqm 30310 cnidOLD 30561 hilid 31140 pjpreeq 31377 cnvbraval 32089 cdj3lem2 32414 xdivmul 32895 cvmliftphtlem 35297 cvmlift3lem4 35302 cvmlift3lem6 35304 cvmlift3lem9 35307 transportprops 36015 ltflcei 37595 cmpidelt 37846 exidresid 37866 lshpkrlem1 39096 cdlemeiota 40572 dochfl1 41463 hgmapvs 41878 renegadd 42353 resubadd 42360 addinvcom 42413 redivmuld 42426 evlsval3 42540 fsuppind 42571 wessf1ornlem 45172 fourierdlem50 46147 |
| Copyright terms: Public domain | W3C validator |