Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version |
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | riota2f 7257 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!wreu 3066 ℩crio 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-reu 3072 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-riota 7232 |
This theorem is referenced by: eqsup 9215 sup0 9225 ttrcltr 9474 fin23lem22 10083 subadd 11224 divmul 11636 fllelt 13517 flflp1 13527 flval2 13534 flbi 13536 remim 14828 resqrtcl 14965 resqrtthlem 14966 sqrtneg 14979 sqrtthlem 15074 divalgmod 16115 qnumdenbi 16448 catidd 17389 lubprop 18076 glbprop 18089 poslubd 18131 isglbd 18227 ismgmid 18349 isgrpinv 18632 pj1id 19305 coeeq 25388 ismir 27020 mireq 27026 ismidb 27139 islmib 27148 usgredg2vlem2 27593 frgrncvvdeqlem3 28665 frgr2wwlkeqm 28695 cnidOLD 28944 hilid 29523 pjpreeq 29760 cnvbraval 30472 cdj3lem2 30797 xdivmul 31199 cvmliftphtlem 33279 cvmlift3lem4 33284 cvmlift3lem6 33286 cvmlift3lem9 33289 scutbday 33998 eqscut 33999 scutun12 34004 scutbdaylt 34012 transportprops 34336 ltflcei 35765 cmpidelt 36017 exidresid 36037 lshpkrlem1 37124 cdlemeiota 38599 dochfl1 39490 hgmapvs 39905 evlsval3 40272 fsuppind 40279 renegadd 40355 resubadd 40362 addinvcom 40413 wessf1ornlem 42722 fourierdlem50 43697 |
Copyright terms: Public domain | W3C validator |