| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version | ||
| Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | riota2f 7351 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3349 ℩crio 7326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-reu 3352 df-v 3446 df-un 3916 df-ss 3928 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6453 df-riota 7327 |
| This theorem is referenced by: eqsup 9384 sup0 9395 ttrcltr 9648 fin23lem22 10259 subadd 11403 divmul 11819 fllelt 13738 flflp1 13748 flval2 13755 flbi 13757 remim 15061 resqrtcl 15197 resqrtthlem 15198 sqrtneg 15211 sqrtthlem 15307 divalgmod 16354 qnumdenbi 16692 catidd 17623 lubprop 18299 glbprop 18312 poslubd 18354 isglbd 18452 ismgmid 18576 isgrpinv 18909 pj1id 19615 coeeq 26167 scutbday 27752 eqscut 27753 scutun12 27758 scutbdaylt 27766 divsmulw 28138 ismir 28641 mireq 28647 ismidb 28760 islmib 28769 usgredg2vlem2 29208 frgrncvvdeqlem3 30282 frgr2wwlkeqm 30312 cnidOLD 30563 hilid 31142 pjpreeq 31379 cnvbraval 32091 cdj3lem2 32416 xdivmul 32897 cvmliftphtlem 35299 cvmlift3lem4 35304 cvmlift3lem6 35306 cvmlift3lem9 35309 transportprops 36017 ltflcei 37597 cmpidelt 37848 exidresid 37868 lshpkrlem1 39098 cdlemeiota 40574 dochfl1 41465 hgmapvs 41880 renegadd 42355 resubadd 42362 addinvcom 42415 redivmuld 42428 evlsval3 42542 fsuppind 42573 wessf1ornlem 45174 fourierdlem50 46149 |
| Copyright terms: Public domain | W3C validator |