| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version | ||
| Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | riota2f 7327 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃!wreu 3344 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-reu 3347 df-v 3438 df-un 3902 df-ss 3914 df-sn 4574 df-pr 4576 df-uni 4857 df-iota 6437 df-riota 7303 |
| This theorem is referenced by: eqsup 9340 sup0 9351 ttrcltr 9606 fin23lem22 10218 subadd 11363 divmul 11779 fllelt 13701 flflp1 13711 flval2 13718 flbi 13720 remim 15024 resqrtcl 15160 resqrtthlem 15161 sqrtneg 15174 sqrtthlem 15270 divalgmod 16317 qnumdenbi 16655 catidd 17586 lubprop 18262 glbprop 18275 poslubd 18317 isglbd 18415 ismgmid 18573 isgrpinv 18906 pj1id 19611 coeeq 26159 scutbday 27745 eqscut 27746 scutun12 27751 scutbdaylt 27759 divsmulw 28132 ismir 28637 mireq 28643 ismidb 28756 islmib 28765 usgredg2vlem2 29204 frgrncvvdeqlem3 30281 frgr2wwlkeqm 30311 cnidOLD 30562 hilid 31141 pjpreeq 31378 cnvbraval 32090 cdj3lem2 32415 xdivmul 32905 cvmliftphtlem 35361 cvmlift3lem4 35366 cvmlift3lem6 35368 cvmlift3lem9 35371 transportprops 36078 ltflcei 37647 cmpidelt 37898 exidresid 37918 lshpkrlem1 39208 cdlemeiota 40683 dochfl1 41574 hgmapvs 41989 renegadd 42464 resubadd 42471 addinvcom 42524 redivmuld 42537 evlsval3 42651 fsuppind 42682 wessf1ornlem 45281 fourierdlem50 46253 |
| Copyright terms: Public domain | W3C validator |