![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version |
Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | riota2f 7429 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃!wreu 3386 ℩crio 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-reu 3389 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-riota 7404 |
This theorem is referenced by: eqsup 9525 sup0 9535 ttrcltr 9785 fin23lem22 10396 subadd 11539 divmul 11952 fllelt 13848 flflp1 13858 flval2 13865 flbi 13867 remim 15166 resqrtcl 15302 resqrtthlem 15303 sqrtneg 15316 sqrtthlem 15411 divalgmod 16454 qnumdenbi 16791 catidd 17738 lubprop 18428 glbprop 18441 poslubd 18483 isglbd 18579 ismgmid 18703 isgrpinv 19033 pj1id 19741 coeeq 26286 scutbday 27867 eqscut 27868 scutun12 27873 scutbdaylt 27881 divsmulw 28236 ismir 28685 mireq 28691 ismidb 28804 islmib 28813 usgredg2vlem2 29261 frgrncvvdeqlem3 30333 frgr2wwlkeqm 30363 cnidOLD 30614 hilid 31193 pjpreeq 31430 cnvbraval 32142 cdj3lem2 32467 xdivmul 32889 cvmliftphtlem 35285 cvmlift3lem4 35290 cvmlift3lem6 35292 cvmlift3lem9 35295 transportprops 35998 ltflcei 37568 cmpidelt 37819 exidresid 37839 lshpkrlem1 39066 cdlemeiota 40542 dochfl1 41433 hgmapvs 41848 renegadd 42348 resubadd 42355 addinvcom 42407 evlsval3 42514 fsuppind 42545 wessf1ornlem 45092 fourierdlem50 46077 |
Copyright terms: Public domain | W3C validator |