| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota2 | Structured version Visualization version GIF version | ||
| Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota2.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riota2 | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | riota2.1 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | riota2f 7371 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3354 ℩crio 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-reu 3357 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 df-riota 7347 |
| This theorem is referenced by: eqsup 9414 sup0 9425 ttrcltr 9676 fin23lem22 10287 subadd 11431 divmul 11847 fllelt 13766 flflp1 13776 flval2 13783 flbi 13785 remim 15090 resqrtcl 15226 resqrtthlem 15227 sqrtneg 15240 sqrtthlem 15336 divalgmod 16383 qnumdenbi 16721 catidd 17648 lubprop 18324 glbprop 18337 poslubd 18379 isglbd 18475 ismgmid 18599 isgrpinv 18932 pj1id 19636 coeeq 26139 scutbday 27723 eqscut 27724 scutun12 27729 scutbdaylt 27737 divsmulw 28103 ismir 28593 mireq 28599 ismidb 28712 islmib 28721 usgredg2vlem2 29160 frgrncvvdeqlem3 30237 frgr2wwlkeqm 30267 cnidOLD 30518 hilid 31097 pjpreeq 31334 cnvbraval 32046 cdj3lem2 32371 xdivmul 32852 cvmliftphtlem 35311 cvmlift3lem4 35316 cvmlift3lem6 35318 cvmlift3lem9 35321 transportprops 36029 ltflcei 37609 cmpidelt 37860 exidresid 37880 lshpkrlem1 39110 cdlemeiota 40586 dochfl1 41477 hgmapvs 41892 renegadd 42367 resubadd 42374 addinvcom 42427 redivmuld 42440 evlsval3 42554 fsuppind 42585 wessf1ornlem 45186 fourierdlem50 46161 |
| Copyright terms: Public domain | W3C validator |