MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvfval Structured version   Visualization version   GIF version

Theorem grpinvfval 18893
Description: The inverse function of a group. For a shorter proof using ax-rep 5219, see grpinvfvalALT 18894. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) Remove dependency on ax-rep 5219. (Revised by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfval 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, 0   𝑥, +
Allowed substitution hints:   + (𝑦)   𝑁(𝑥,𝑦)   0 (𝑦)

Proof of Theorem grpinvfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvval.n . 2 𝑁 = (invg𝐺)
2 fveq2 6828 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpinvval.b . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2786 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6828 . . . . . . . . 9 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 grpinvval.p . . . . . . . . 9 + = (+g𝐺)
75, 6eqtr4di 2786 . . . . . . . 8 (𝑔 = 𝐺 → (+g𝑔) = + )
87oveqd 7369 . . . . . . 7 (𝑔 = 𝐺 → (𝑦(+g𝑔)𝑥) = (𝑦 + 𝑥))
9 fveq2 6828 . . . . . . . 8 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
10 grpinvval.o . . . . . . . 8 0 = (0g𝐺)
119, 10eqtr4di 2786 . . . . . . 7 (𝑔 = 𝐺 → (0g𝑔) = 0 )
128, 11eqeq12d 2749 . . . . . 6 (𝑔 = 𝐺 → ((𝑦(+g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 + 𝑥) = 0 ))
134, 12riotaeqbidv 7312 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔)) = (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
144, 13mpteq12dv 5180 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
15 df-minusg 18852 . . . 4 invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))))
163fvexi 6842 . . . . 5 𝐵 ∈ V
17 p0ex 5324 . . . . . 6 {∅} ∈ V
1817, 16unex 7683 . . . . 5 ({∅} ∪ 𝐵) ∈ V
19 ssun2 4128 . . . . . . . 8 𝐵 ⊆ ({∅} ∪ 𝐵)
20 riotacl 7326 . . . . . . . 8 (∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ 𝐵)
2119, 20sselid 3928 . . . . . . 7 (∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵))
22 ssun1 4127 . . . . . . . 8 {∅} ⊆ ({∅} ∪ 𝐵)
23 riotaund 7348 . . . . . . . . 9 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = ∅)
24 riotaex 7313 . . . . . . . . . 10 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ V
2524elsn 4590 . . . . . . . . 9 ((𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ {∅} ↔ (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = ∅)
2623, 25sylibr 234 . . . . . . . 8 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ {∅})
2722, 26sselid 3928 . . . . . . 7 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵))
2821, 27pm2.61i 182 . . . . . 6 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵)
2928rgenw 3052 . . . . 5 𝑥𝐵 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵)
3016, 18, 29mptexw 7891 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) ∈ V
3114, 15, 30fvmpt 6935 . . 3 (𝐺 ∈ V → (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
32 fvprc 6820 . . . . 5 𝐺 ∈ V → (invg𝐺) = ∅)
33 mpt0 6628 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = ∅
3432, 33eqtr4di 2786 . . . 4 𝐺 ∈ V → (invg𝐺) = (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
35 fvprc 6820 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
363, 35eqtrid 2780 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
3736mpteq1d 5183 . . . 4 𝐺 ∈ V → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
3834, 37eqtr4d 2771 . . 3 𝐺 ∈ V → (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
3931, 38pm2.61i 182 . 2 (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
401, 39eqtri 2756 1 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  ∃!wreu 3345  Vcvv 3437  cun 3896  c0 4282  {csn 4575  cmpt 5174  cfv 6486  crio 7308  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  invgcminusg 18849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7309  df-ov 7355  df-minusg 18852
This theorem is referenced by:  grpinvval  18895  grpinvfn  18896  grpinvf  18901  grpinvpropd  18930  opprneg  20271
  Copyright terms: Public domain W3C validator