MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvfval Structured version   Visualization version   GIF version

Theorem grpinvfval 19018
Description: The inverse function of a group. For a shorter proof using ax-rep 5303, see grpinvfvalALT 19019. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) Remove dependency on ax-rep 5303. (Revised by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfval 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, 0   𝑥, +
Allowed substitution hints:   + (𝑦)   𝑁(𝑥,𝑦)   0 (𝑦)

Proof of Theorem grpinvfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvval.n . 2 𝑁 = (invg𝐺)
2 fveq2 6920 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpinvval.b . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2798 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6920 . . . . . . . . 9 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 grpinvval.p . . . . . . . . 9 + = (+g𝐺)
75, 6eqtr4di 2798 . . . . . . . 8 (𝑔 = 𝐺 → (+g𝑔) = + )
87oveqd 7465 . . . . . . 7 (𝑔 = 𝐺 → (𝑦(+g𝑔)𝑥) = (𝑦 + 𝑥))
9 fveq2 6920 . . . . . . . 8 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
10 grpinvval.o . . . . . . . 8 0 = (0g𝐺)
119, 10eqtr4di 2798 . . . . . . 7 (𝑔 = 𝐺 → (0g𝑔) = 0 )
128, 11eqeq12d 2756 . . . . . 6 (𝑔 = 𝐺 → ((𝑦(+g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 + 𝑥) = 0 ))
134, 12riotaeqbidv 7407 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔)) = (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
144, 13mpteq12dv 5257 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
15 df-minusg 18977 . . . 4 invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))))
163fvexi 6934 . . . . 5 𝐵 ∈ V
17 p0ex 5402 . . . . . 6 {∅} ∈ V
1817, 16unex 7779 . . . . 5 ({∅} ∪ 𝐵) ∈ V
19 ssun2 4202 . . . . . . . 8 𝐵 ⊆ ({∅} ∪ 𝐵)
20 riotacl 7422 . . . . . . . 8 (∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ 𝐵)
2119, 20sselid 4006 . . . . . . 7 (∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵))
22 ssun1 4201 . . . . . . . 8 {∅} ⊆ ({∅} ∪ 𝐵)
23 riotaund 7444 . . . . . . . . 9 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = ∅)
24 riotaex 7408 . . . . . . . . . 10 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ V
2524elsn 4663 . . . . . . . . 9 ((𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ {∅} ↔ (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = ∅)
2623, 25sylibr 234 . . . . . . . 8 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ {∅})
2722, 26sselid 4006 . . . . . . 7 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵))
2821, 27pm2.61i 182 . . . . . 6 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵)
2928rgenw 3071 . . . . 5 𝑥𝐵 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵)
3016, 18, 29mptexw 7993 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) ∈ V
3114, 15, 30fvmpt 7029 . . 3 (𝐺 ∈ V → (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
32 fvprc 6912 . . . . 5 𝐺 ∈ V → (invg𝐺) = ∅)
33 mpt0 6722 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = ∅
3432, 33eqtr4di 2798 . . . 4 𝐺 ∈ V → (invg𝐺) = (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
35 fvprc 6912 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
363, 35eqtrid 2792 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
3736mpteq1d 5261 . . . 4 𝐺 ∈ V → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
3834, 37eqtr4d 2783 . . 3 𝐺 ∈ V → (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
3931, 38pm2.61i 182 . 2 (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
401, 39eqtri 2768 1 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  ∃!wreu 3386  Vcvv 3488  cun 3974  c0 4352  {csn 4648  cmpt 5249  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  invgcminusg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-minusg 18977
This theorem is referenced by:  grpinvval  19020  grpinvfn  19021  grpinvf  19026  grpinvpropd  19055  opprneg  20377
  Copyright terms: Public domain W3C validator