MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvfval Structured version   Visualization version   GIF version

Theorem grpinvfval 18618
Description: The inverse function of a group. For a shorter proof using ax-rep 5209, see grpinvfvalALT 18619. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) Remove dependency on ax-rep 5209. (Revised by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfval 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, 0   𝑥, +
Allowed substitution hints:   + (𝑦)   𝑁(𝑥,𝑦)   0 (𝑦)

Proof of Theorem grpinvfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvval.n . 2 𝑁 = (invg𝐺)
2 fveq2 6774 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpinvval.b . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2796 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6774 . . . . . . . . 9 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 grpinvval.p . . . . . . . . 9 + = (+g𝐺)
75, 6eqtr4di 2796 . . . . . . . 8 (𝑔 = 𝐺 → (+g𝑔) = + )
87oveqd 7292 . . . . . . 7 (𝑔 = 𝐺 → (𝑦(+g𝑔)𝑥) = (𝑦 + 𝑥))
9 fveq2 6774 . . . . . . . 8 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
10 grpinvval.o . . . . . . . 8 0 = (0g𝐺)
119, 10eqtr4di 2796 . . . . . . 7 (𝑔 = 𝐺 → (0g𝑔) = 0 )
128, 11eqeq12d 2754 . . . . . 6 (𝑔 = 𝐺 → ((𝑦(+g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 + 𝑥) = 0 ))
134, 12riotaeqbidv 7235 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔)) = (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
144, 13mpteq12dv 5165 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
15 df-minusg 18581 . . . 4 invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))))
163fvexi 6788 . . . . 5 𝐵 ∈ V
17 p0ex 5307 . . . . . 6 {∅} ∈ V
1817, 16unex 7596 . . . . 5 ({∅} ∪ 𝐵) ∈ V
19 ssun2 4107 . . . . . . . 8 𝐵 ⊆ ({∅} ∪ 𝐵)
20 riotacl 7250 . . . . . . . 8 (∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ 𝐵)
2119, 20sselid 3919 . . . . . . 7 (∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵))
22 ssun1 4106 . . . . . . . 8 {∅} ⊆ ({∅} ∪ 𝐵)
23 riotaund 7272 . . . . . . . . 9 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = ∅)
24 riotaex 7236 . . . . . . . . . 10 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ V
2524elsn 4576 . . . . . . . . 9 ((𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ {∅} ↔ (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = ∅)
2623, 25sylibr 233 . . . . . . . 8 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ {∅})
2722, 26sselid 3919 . . . . . . 7 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵))
2821, 27pm2.61i 182 . . . . . 6 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵)
2928rgenw 3076 . . . . 5 𝑥𝐵 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵)
3016, 18, 29mptexw 7795 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) ∈ V
3114, 15, 30fvmpt 6875 . . 3 (𝐺 ∈ V → (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
32 fvprc 6766 . . . . 5 𝐺 ∈ V → (invg𝐺) = ∅)
33 mpt0 6575 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = ∅
3432, 33eqtr4di 2796 . . . 4 𝐺 ∈ V → (invg𝐺) = (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
35 fvprc 6766 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
363, 35eqtrid 2790 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
3736mpteq1d 5169 . . . 4 𝐺 ∈ V → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
3834, 37eqtr4d 2781 . . 3 𝐺 ∈ V → (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
3931, 38pm2.61i 182 . 2 (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
401, 39eqtri 2766 1 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  ∃!wreu 3066  Vcvv 3432  cun 3885  c0 4256  {csn 4561  cmpt 5157  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  invgcminusg 18578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-minusg 18581
This theorem is referenced by:  grpinvval  18620  grpinvfn  18621  grpinvf  18626  grpinvpropd  18650  opprneg  19877
  Copyright terms: Public domain W3C validator