MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfv3 Structured version   Visualization version   GIF version

Theorem f1ocnvfv3 7146
Description: Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
f1ocnvfv3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) = (𝑥𝐴 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem f1ocnvfv3
StepHypRef Expression
1 f1ocnvdm 7035 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) ∈ 𝐴)
2 f1ocnvfvb 7030 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑥𝐴𝐶𝐵) → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝐶) = 𝑥))
323expa 1114 . . . . 5 (((𝐹:𝐴1-1-onto𝐵𝑥𝐴) ∧ 𝐶𝐵) → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝐶) = 𝑥))
43an32s 650 . . . 4 (((𝐹:𝐴1-1-onto𝐵𝐶𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝐶) = 𝑥))
5 eqcom 2828 . . . 4 (𝑥 = (𝐹𝐶) ↔ (𝐹𝐶) = 𝑥)
64, 5syl6bbr 291 . . 3 (((𝐹:𝐴1-1-onto𝐵𝐶𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝐶𝑥 = (𝐹𝐶)))
71, 6riota5 7137 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝑥𝐴 (𝐹𝑥) = 𝐶) = (𝐹𝐶))
87eqcomd 2827 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) = (𝑥𝐴 (𝐹𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  ccnv 5548  1-1-ontowf1o 6348  cfv 6349  crio 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator