Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbd2 Structured version   Visualization version   GIF version

Theorem rnmptbd2 45189
Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbd2.x 𝑥𝜑
rnmptbd2.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbd2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbd2
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5126 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
21ralbidv 3165 . . . 4 (𝑦 = 𝑤 → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑤𝐵))
32cbvrexvw 3224 . . 3 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
43a1i 11 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵))
5 rnmptbd2.x . . 3 𝑥𝜑
6 rnmptbd2.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
75, 6rnmptbd2lem 45188 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑤𝑢))
8 breq1 5126 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝑢𝑦𝑢))
98ralbidv 3165 . . . . 5 (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑤𝑢 ↔ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑦𝑢))
10 breq2 5127 . . . . . 6 (𝑢 = 𝑧 → (𝑦𝑢𝑦𝑧))
1110cbvralvw 3223 . . . . 5 (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑦𝑢 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
129, 11bitrdi 287 . . . 4 (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑤𝑢 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
1312cbvrexvw 3224 . . 3 (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑤𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
1413a1i 11 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑤𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
154, 7, 143bitrd 305 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1782  wcel 2107  wral 3050  wrex 3059   class class class wbr 5123  cmpt 5205  ran crn 5666  cr 11135  cle 11277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-mpt 5206  df-cnv 5673  df-dm 5675  df-rn 5676
This theorem is referenced by:  limsupvaluz2  45686
  Copyright terms: Public domain W3C validator