Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbd2 | Structured version Visualization version GIF version |
Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rnmptbd2.x | ⊢ Ⅎ𝑥𝜑 |
rnmptbd2.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
rnmptbd2 | ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5033 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ≤ 𝐵 ↔ 𝑤 ≤ 𝐵)) | |
2 | 1 | ralbidv 3109 | . . . 4 ⊢ (𝑦 = 𝑤 → (∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
3 | 2 | cbvrexvw 3350 | . . 3 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
5 | rnmptbd2.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
6 | rnmptbd2.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
7 | 5, 6 | rnmptbd2lem 42331 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢)) |
8 | breq1 5033 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ≤ 𝑢 ↔ 𝑦 ≤ 𝑢)) | |
9 | 8 | ralbidv 3109 | . . . . 5 ⊢ (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑢)) |
10 | breq2 5034 | . . . . . 6 ⊢ (𝑢 = 𝑧 → (𝑦 ≤ 𝑢 ↔ 𝑦 ≤ 𝑧)) | |
11 | 10 | cbvralvw 3349 | . . . . 5 ⊢ (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑢 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
12 | 9, 11 | bitrdi 290 | . . . 4 ⊢ (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
13 | 12 | cbvrexvw 3350 | . . 3 ⊢ (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
15 | 4, 7, 14 | 3bitrd 308 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 Ⅎwnf 1790 ∈ wcel 2114 ∀wral 3053 ∃wrex 3054 class class class wbr 5030 ↦ cmpt 5110 ran crn 5526 ℝcr 10614 ≤ cle 10754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-mpt 5111 df-cnv 5533 df-dm 5535 df-rn 5536 |
This theorem is referenced by: limsupvaluz2 42821 |
Copyright terms: Public domain | W3C validator |