Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbd2 Structured version   Visualization version   GIF version

Theorem rnmptbd2 42795
Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbd2.x 𝑥𝜑
rnmptbd2.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbd2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbd2
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5077 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
21ralbidv 3112 . . . 4 (𝑦 = 𝑤 → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑤𝐵))
32cbvrexvw 3384 . . 3 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
43a1i 11 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵))
5 rnmptbd2.x . . 3 𝑥𝜑
6 rnmptbd2.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
75, 6rnmptbd2lem 42794 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑤𝑢))
8 breq1 5077 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝑢𝑦𝑢))
98ralbidv 3112 . . . . 5 (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑤𝑢 ↔ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑦𝑢))
10 breq2 5078 . . . . . 6 (𝑢 = 𝑧 → (𝑦𝑢𝑦𝑧))
1110cbvralvw 3383 . . . . 5 (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑦𝑢 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
129, 11bitrdi 287 . . . 4 (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑤𝑢 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
1312cbvrexvw 3384 . . 3 (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑤𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
1413a1i 11 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑤𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
154, 7, 143bitrd 305 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wnf 1786  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  cmpt 5157  ran crn 5590  cr 10870  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  limsupvaluz2  43279
  Copyright terms: Public domain W3C validator