| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbd2 | Structured version Visualization version GIF version | ||
| Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| rnmptbd2.x | ⊢ Ⅎ𝑥𝜑 |
| rnmptbd2.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rnmptbd2 | ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5126 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ≤ 𝐵 ↔ 𝑤 ≤ 𝐵)) | |
| 2 | 1 | ralbidv 3165 | . . . 4 ⊢ (𝑦 = 𝑤 → (∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
| 3 | 2 | cbvrexvw 3224 | . . 3 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
| 5 | rnmptbd2.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 6 | rnmptbd2.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 7 | 5, 6 | rnmptbd2lem 45188 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢)) |
| 8 | breq1 5126 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ≤ 𝑢 ↔ 𝑦 ≤ 𝑢)) | |
| 9 | 8 | ralbidv 3165 | . . . . 5 ⊢ (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑢)) |
| 10 | breq2 5127 | . . . . . 6 ⊢ (𝑢 = 𝑧 → (𝑦 ≤ 𝑢 ↔ 𝑦 ≤ 𝑧)) | |
| 11 | 10 | cbvralvw 3223 | . . . . 5 ⊢ (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑢 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
| 12 | 9, 11 | bitrdi 287 | . . . 4 ⊢ (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
| 13 | 12 | cbvrexvw 3224 | . . 3 ⊢ (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
| 15 | 4, 7, 14 | 3bitrd 305 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1782 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 class class class wbr 5123 ↦ cmpt 5205 ran crn 5666 ℝcr 11135 ≤ cle 11277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-cnv 5673 df-dm 5675 df-rn 5676 |
| This theorem is referenced by: limsupvaluz2 45686 |
| Copyright terms: Public domain | W3C validator |