Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbd2 | Structured version Visualization version GIF version |
Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rnmptbd2.x | ⊢ Ⅎ𝑥𝜑 |
rnmptbd2.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
rnmptbd2 | ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5077 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ≤ 𝐵 ↔ 𝑤 ≤ 𝐵)) | |
2 | 1 | ralbidv 3112 | . . . 4 ⊢ (𝑦 = 𝑤 → (∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
3 | 2 | cbvrexvw 3384 | . . 3 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
5 | rnmptbd2.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
6 | rnmptbd2.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
7 | 5, 6 | rnmptbd2lem 42794 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢)) |
8 | breq1 5077 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ≤ 𝑢 ↔ 𝑦 ≤ 𝑢)) | |
9 | 8 | ralbidv 3112 | . . . . 5 ⊢ (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑢)) |
10 | breq2 5078 | . . . . . 6 ⊢ (𝑢 = 𝑧 → (𝑦 ≤ 𝑢 ↔ 𝑦 ≤ 𝑧)) | |
11 | 10 | cbvralvw 3383 | . . . . 5 ⊢ (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑢 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
12 | 9, 11 | bitrdi 287 | . . . 4 ⊢ (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
13 | 12 | cbvrexvw 3384 | . . 3 ⊢ (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
15 | 4, 7, 14 | 3bitrd 305 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 ℝcr 10870 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: limsupvaluz2 43279 |
Copyright terms: Public domain | W3C validator |