![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbd2 | Structured version Visualization version GIF version |
Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rnmptbd2.x | ⊢ Ⅎ𝑥𝜑 |
rnmptbd2.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
rnmptbd2 | ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5150 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ≤ 𝐵 ↔ 𝑤 ≤ 𝐵)) | |
2 | 1 | ralbidv 3175 | . . . 4 ⊢ (𝑦 = 𝑤 → (∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
3 | 2 | cbvrexvw 3233 | . . 3 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
5 | rnmptbd2.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
6 | rnmptbd2.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
7 | 5, 6 | rnmptbd2lem 44250 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢)) |
8 | breq1 5150 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ≤ 𝑢 ↔ 𝑦 ≤ 𝑢)) | |
9 | 8 | ralbidv 3175 | . . . . 5 ⊢ (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑢)) |
10 | breq2 5151 | . . . . . 6 ⊢ (𝑢 = 𝑧 → (𝑦 ≤ 𝑢 ↔ 𝑦 ≤ 𝑧)) | |
11 | 10 | cbvralvw 3232 | . . . . 5 ⊢ (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑢 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
12 | 9, 11 | bitrdi 286 | . . . 4 ⊢ (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
13 | 12 | cbvrexvw 3233 | . . 3 ⊢ (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑢 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
15 | 4, 7, 14 | 3bitrd 304 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 Ⅎwnf 1783 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 class class class wbr 5147 ↦ cmpt 5230 ran crn 5676 ℝcr 11111 ≤ cle 11253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-mpt 5231 df-cnv 5683 df-dm 5685 df-rn 5686 |
This theorem is referenced by: limsupvaluz2 44752 |
Copyright terms: Public domain | W3C validator |