Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbd2lem Structured version   Visualization version   GIF version

Theorem rnmptbd2lem 42794
Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbd2lem.x 𝑥𝜑
rnmptbd2lem.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbd2lem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbd2lem
StepHypRef Expression
1 eqid 2738 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21elrnmpt 5865 . . . . . . 7 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32elv 3438 . . . . . 6 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
4 nfra1 3144 . . . . . . . . 9 𝑥𝑥𝐴 𝑦𝐵
5 nfv 1917 . . . . . . . . 9 𝑥 𝑦𝑧
6 rspa 3132 . . . . . . . . . . 11 ((∀𝑥𝐴 𝑦𝐵𝑥𝐴) → 𝑦𝐵)
7 simpl 483 . . . . . . . . . . . . 13 ((𝑦𝐵𝑧 = 𝐵) → 𝑦𝐵)
8 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵𝑧 = 𝐵)
98eqcomd 2744 . . . . . . . . . . . . . 14 (𝑧 = 𝐵𝐵 = 𝑧)
109adantl 482 . . . . . . . . . . . . 13 ((𝑦𝐵𝑧 = 𝐵) → 𝐵 = 𝑧)
117, 10breqtrd 5100 . . . . . . . . . . . 12 ((𝑦𝐵𝑧 = 𝐵) → 𝑦𝑧)
1211ex 413 . . . . . . . . . . 11 (𝑦𝐵 → (𝑧 = 𝐵𝑦𝑧))
136, 12syl 17 . . . . . . . . . 10 ((∀𝑥𝐴 𝑦𝐵𝑥𝐴) → (𝑧 = 𝐵𝑦𝑧))
1413ex 413 . . . . . . . . 9 (∀𝑥𝐴 𝑦𝐵 → (𝑥𝐴 → (𝑧 = 𝐵𝑦𝑧)))
154, 5, 14rexlimd 3250 . . . . . . . 8 (∀𝑥𝐴 𝑦𝐵 → (∃𝑥𝐴 𝑧 = 𝐵𝑦𝑧))
1615imp 407 . . . . . . 7 ((∀𝑥𝐴 𝑦𝐵 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑦𝑧)
1716adantll 711 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑦𝑧)
183, 17sylan2b 594 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑦𝑧)
1918ralrimiva 3103 . . . 4 ((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
2019ex 413 . . 3 (𝜑 → (∀𝑥𝐴 𝑦𝐵 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
2120reximdv 3202 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
22 rnmptbd2lem.x . . . . . 6 𝑥𝜑
23 nfmpt1 5182 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
2423nfrn 5861 . . . . . . 7 𝑥ran (𝑥𝐴𝐵)
2524, 5nfralw 3151 . . . . . 6 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧
2622, 25nfan 1902 . . . . 5 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
27 breq2 5078 . . . . . 6 (𝑧 = 𝐵 → (𝑦𝑧𝑦𝐵))
28 simplr 766 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
29 simpr 485 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝑥𝐴)
30 rnmptbd2lem.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑉)
3130adantlr 712 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝐵𝑉)
321, 29, 31elrnmpt1d 42773 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
3327, 28, 32rspcdva 3562 . . . . 5 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝑦𝐵)
3426, 33ralrimia 3430 . . . 4 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) → ∀𝑥𝐴 𝑦𝐵)
3534ex 413 . . 3 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧 → ∀𝑥𝐴 𝑦𝐵))
3635reximdv 3202 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵))
3721, 36impbid 211 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  wral 3064  wrex 3065  Vcvv 3432   class class class wbr 5074  cmpt 5157  ran crn 5590  cr 10870  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  rnmptbd2  42795
  Copyright terms: Public domain W3C validator