Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbd2lem Structured version   Visualization version   GIF version

Theorem rnmptbd2lem 45293
Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbd2lem.x 𝑥𝜑
rnmptbd2lem.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbd2lem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbd2lem
StepHypRef Expression
1 eqid 2731 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21elrnmpt 5897 . . . . . . 7 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32elv 3441 . . . . . 6 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
4 nfra1 3256 . . . . . . . . 9 𝑥𝑥𝐴 𝑦𝐵
5 nfv 1915 . . . . . . . . 9 𝑥 𝑦𝑧
6 rspa 3221 . . . . . . . . . . 11 ((∀𝑥𝐴 𝑦𝐵𝑥𝐴) → 𝑦𝐵)
7 simpl 482 . . . . . . . . . . . . 13 ((𝑦𝐵𝑧 = 𝐵) → 𝑦𝐵)
8 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵𝑧 = 𝐵)
98eqcomd 2737 . . . . . . . . . . . . . 14 (𝑧 = 𝐵𝐵 = 𝑧)
109adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐵𝑧 = 𝐵) → 𝐵 = 𝑧)
117, 10breqtrd 5115 . . . . . . . . . . . 12 ((𝑦𝐵𝑧 = 𝐵) → 𝑦𝑧)
1211ex 412 . . . . . . . . . . 11 (𝑦𝐵 → (𝑧 = 𝐵𝑦𝑧))
136, 12syl 17 . . . . . . . . . 10 ((∀𝑥𝐴 𝑦𝐵𝑥𝐴) → (𝑧 = 𝐵𝑦𝑧))
1413ex 412 . . . . . . . . 9 (∀𝑥𝐴 𝑦𝐵 → (𝑥𝐴 → (𝑧 = 𝐵𝑦𝑧)))
154, 5, 14rexlimd 3239 . . . . . . . 8 (∀𝑥𝐴 𝑦𝐵 → (∃𝑥𝐴 𝑧 = 𝐵𝑦𝑧))
1615imp 406 . . . . . . 7 ((∀𝑥𝐴 𝑦𝐵 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑦𝑧)
1716adantll 714 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑦𝑧)
183, 17sylan2b 594 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑦𝑧)
1918ralrimiva 3124 . . . 4 ((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
2019ex 412 . . 3 (𝜑 → (∀𝑥𝐴 𝑦𝐵 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
2120reximdv 3147 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
22 rnmptbd2lem.x . . . . . 6 𝑥𝜑
23 nfmpt1 5188 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
2423nfrn 5891 . . . . . . 7 𝑥ran (𝑥𝐴𝐵)
2524, 5nfralw 3279 . . . . . 6 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧
2622, 25nfan 1900 . . . . 5 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
27 breq2 5093 . . . . . 6 (𝑧 = 𝐵 → (𝑦𝑧𝑦𝐵))
28 simplr 768 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
29 simpr 484 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝑥𝐴)
30 rnmptbd2lem.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑉)
3130adantlr 715 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝐵𝑉)
321, 29, 31elrnmpt1d 5903 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
3327, 28, 32rspcdva 3573 . . . . 5 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝑦𝐵)
3426, 33ralrimia 3231 . . . 4 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) → ∀𝑥𝐴 𝑦𝐵)
3534ex 412 . . 3 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧 → ∀𝑥𝐴 𝑦𝐵))
3635reximdv 3147 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵))
3721, 36impbid 212 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5089  cmpt 5170  ran crn 5615  cr 11005  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  rnmptbd2  45294
  Copyright terms: Public domain W3C validator