Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbd2lem Structured version   Visualization version   GIF version

Theorem rnmptbd2lem 41527
Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbd2lem.x 𝑥𝜑
rnmptbd2lem.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbd2lem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbd2lem
StepHypRef Expression
1 eqid 2823 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21elrnmpt 5830 . . . . . . 7 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32elv 3501 . . . . . 6 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
4 nfra1 3221 . . . . . . . . 9 𝑥𝑥𝐴 𝑦𝐵
5 nfv 1915 . . . . . . . . 9 𝑥 𝑦𝑧
6 rspa 3208 . . . . . . . . . . 11 ((∀𝑥𝐴 𝑦𝐵𝑥𝐴) → 𝑦𝐵)
7 simpl 485 . . . . . . . . . . . . 13 ((𝑦𝐵𝑧 = 𝐵) → 𝑦𝐵)
8 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵𝑧 = 𝐵)
98eqcomd 2829 . . . . . . . . . . . . . 14 (𝑧 = 𝐵𝐵 = 𝑧)
109adantl 484 . . . . . . . . . . . . 13 ((𝑦𝐵𝑧 = 𝐵) → 𝐵 = 𝑧)
117, 10breqtrd 5094 . . . . . . . . . . . 12 ((𝑦𝐵𝑧 = 𝐵) → 𝑦𝑧)
1211ex 415 . . . . . . . . . . 11 (𝑦𝐵 → (𝑧 = 𝐵𝑦𝑧))
136, 12syl 17 . . . . . . . . . 10 ((∀𝑥𝐴 𝑦𝐵𝑥𝐴) → (𝑧 = 𝐵𝑦𝑧))
1413ex 415 . . . . . . . . 9 (∀𝑥𝐴 𝑦𝐵 → (𝑥𝐴 → (𝑧 = 𝐵𝑦𝑧)))
154, 5, 14rexlimd 3319 . . . . . . . 8 (∀𝑥𝐴 𝑦𝐵 → (∃𝑥𝐴 𝑧 = 𝐵𝑦𝑧))
1615imp 409 . . . . . . 7 ((∀𝑥𝐴 𝑦𝐵 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑦𝑧)
1716adantll 712 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑦𝑧)
183, 17sylan2b 595 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑦𝑧)
1918ralrimiva 3184 . . . 4 ((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
2019ex 415 . . 3 (𝜑 → (∀𝑥𝐴 𝑦𝐵 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
2120reximdv 3275 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
22 rnmptbd2lem.x . . . . . 6 𝑥𝜑
23 nfmpt1 5166 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
2423nfrn 5826 . . . . . . 7 𝑥ran (𝑥𝐴𝐵)
2524, 5nfralw 3227 . . . . . 6 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧
2622, 25nfan 1900 . . . . 5 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
27 breq2 5072 . . . . . 6 (𝑧 = 𝐵 → (𝑦𝑧𝑦𝐵))
28 simplr 767 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
29 simpr 487 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝑥𝐴)
30 rnmptbd2lem.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑉)
3130adantlr 713 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝐵𝑉)
321, 29, 31elrnmpt1d 41507 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
3327, 28, 32rspcdva 3627 . . . . 5 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝑦𝐵)
3426, 33ralrimia 41405 . . . 4 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) → ∀𝑥𝐴 𝑦𝐵)
3534ex 415 . . 3 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧 → ∀𝑥𝐴 𝑦𝐵))
3635reximdv 3275 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵))
3721, 36impbid 214 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  wcel 2114  wral 3140  wrex 3141  Vcvv 3496   class class class wbr 5068  cmpt 5148  ran crn 5558  cr 10538  cle 10678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-mpt 5149  df-cnv 5565  df-dm 5567  df-rn 5568
This theorem is referenced by:  rnmptbd2  41528
  Copyright terms: Public domain W3C validator