Proof of Theorem rnmptbd2lem
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
2 | 1 | elrnmpt 5854 |
. . . . . . 7
⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
3 | 2 | elv 3428 |
. . . . . 6
⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
4 | | nfra1 3142 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 |
5 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑦 ≤ 𝑧 |
6 | | rspa 3130 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 𝑦 ≤ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑦 ≤ 𝐵) |
7 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≤ 𝐵 ∧ 𝑧 = 𝐵) → 𝑦 ≤ 𝐵) |
8 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝐵 → 𝑧 = 𝐵) |
9 | 8 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝐵 → 𝐵 = 𝑧) |
10 | 9 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≤ 𝐵 ∧ 𝑧 = 𝐵) → 𝐵 = 𝑧) |
11 | 7, 10 | breqtrd 5096 |
. . . . . . . . . . . 12
⊢ ((𝑦 ≤ 𝐵 ∧ 𝑧 = 𝐵) → 𝑦 ≤ 𝑧) |
12 | 11 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑦 ≤ 𝐵 → (𝑧 = 𝐵 → 𝑦 ≤ 𝑧)) |
13 | 6, 12 | syl 17 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 𝑦 ≤ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑧 = 𝐵 → 𝑦 ≤ 𝑧)) |
14 | 13 | ex 412 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 𝑦 ≤ 𝐵 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑦 ≤ 𝑧))) |
15 | 4, 5, 14 | rexlimd 3245 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 𝑦 ≤ 𝐵 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑦 ≤ 𝑧)) |
16 | 15 | imp 406 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 𝑦 ≤ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → 𝑦 ≤ 𝑧) |
17 | 16 | adantll 710 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → 𝑦 ≤ 𝑧) |
18 | 3, 17 | sylan2b 593 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) ∧ 𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑦 ≤ 𝑧) |
19 | 18 | ralrimiva 3107 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
20 | 19 | ex 412 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
21 | 20 | reximdv 3201 |
. 2
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
22 | | rnmptbd2lem.x |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
23 | | nfmpt1 5178 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
24 | 23 | nfrn 5850 |
. . . . . . 7
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
25 | 24, 5 | nfralw 3149 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧 |
26 | 22, 25 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
27 | | breq2 5074 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝐵)) |
28 | | simplr 765 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) ∧ 𝑥 ∈ 𝐴) → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
29 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
30 | | rnmptbd2lem.b |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
31 | 30 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
32 | 1, 29, 31 | elrnmpt1d 42662 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
33 | 27, 28, 32 | rspcdva 3554 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) ∧ 𝑥 ∈ 𝐴) → 𝑦 ≤ 𝐵) |
34 | 26, 33 | ralrimia 3420 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) → ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) |
35 | 34 | ex 412 |
. . 3
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧 → ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵)) |
36 | 35 | reximdv 3201 |
. 2
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵)) |
37 | 21, 36 | impbid 211 |
1
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |