MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwlkg Structured version   Visualization version   GIF version

Theorem rusgrnumwlkg 29907
Description: In a k-regular graph, the number of walks of a fixed length n from a fixed vertex is k to the power of n. This theorem corresponds to statement 11 in [Huneke] p. 2: "The total number of walks v(0) v(1) ... v(n-2) from a fixed vertex v = v(0) is k^(n-2) as G is k-regular." This theorem even holds for n=0: then the walk consists of only one vertex v(0), so the number of walks of length n=0 starting with v=v(0) is 1=k^0. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.) (Proof shortened by AV, 5-Aug-2022.)
Hypothesis
Ref Expression
rusgrnumwwlkg.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwlkg ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}) = (𝐾𝑁))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑁   𝑤,𝑃   𝑤,𝑉

Proof of Theorem rusgrnumwlkg
Dummy variables 𝑓 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7420 . . . 4 (𝑁 WWalksN 𝐺) ∈ V
21rabex 5294 . . 3 {𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃} ∈ V
3 rusgrusgr 29492 . . . . . 6 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
4 usgruspgr 29107 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
53, 4syl 17 . . . . 5 (𝐺 RegUSGraph 𝐾𝐺 ∈ USPGraph)
6 simp3 1138 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
7 wlksnwwlknvbij 29838 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃})
85, 6, 7syl2an 596 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃})
9 f1oexbi 7904 . . . 4 (∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)} ↔ ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃})
108, 9sylibr 234 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)})
11 hasheqf1oi 14316 . . 3 ({𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃} ∈ V → (∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)} → (♯‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)})))
122, 10, 11mpsyl 68 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}))
13 rusgrnumwwlkg.v . . 3 𝑉 = (Vtx‘𝐺)
1413rusgrnumwwlkg 29906 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (𝐾𝑁))
1512, 14eqtr3d 2766 1 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}) = (𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {crab 3405  Vcvv 3447   class class class wbr 5107  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Fincfn 8918  0cc0 11068  0cn0 12442  cexp 14026  chash 14295  Vtxcvtx 28923  USPGraphcuspgr 29075  USGraphcusgr 29076   RegUSGraph crusgr 29484  Walkscwlks 29524   WWalksN cwwlksn 29756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-vtx 28925  df-iedg 28926  df-edg 28975  df-uhgr 28985  df-ushgr 28986  df-upgr 29009  df-umgr 29010  df-uspgr 29077  df-usgr 29078  df-fusgr 29244  df-nbgr 29260  df-vtxdg 29394  df-rgr 29485  df-rusgr 29486  df-wlks 29527  df-wwlks 29760  df-wwlksn 29761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator