![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrnumwlkg | Structured version Visualization version GIF version |
Description: In a k-regular graph, the number of walks of a fixed length n from a fixed vertex is k to the power of n. This theorem corresponds to statement 11 in [Huneke] p. 2: "The total number of walks v(0) v(1) ... v(n-2) from a fixed vertex v = v(0) is k^(n-2) as G is k-regular." This theorem even holds for n=0: then the walk consists of only one vertex v(0), so the number of walks of length n=0 starting with v=v(0) is 1=k^0. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.) (Proof shortened by AV, 5-Aug-2022.) |
Ref | Expression |
---|---|
rusgrnumwwlkg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
rusgrnumwlkg | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}) = (𝐾↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7452 | . . . 4 ⊢ (𝑁 WWalksN 𝐺) ∈ V | |
2 | 1 | rabex 5335 | . . 3 ⊢ {𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃} ∈ V |
3 | rusgrusgr 29450 | . . . . . 6 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) | |
4 | usgruspgr 29065 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USPGraph) |
6 | simp3 1135 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
7 | wlksnwwlknvbij 29791 | . . . . 5 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) | |
8 | 5, 6, 7 | syl2an 594 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) |
9 | f1oexbi 7936 | . . . 4 ⊢ (∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)} ↔ ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}) |
11 | hasheqf1oi 14346 | . . 3 ⊢ ({𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃} ∈ V → (∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)} → (♯‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}))) | |
12 | 2, 10, 11 | mpsyl 68 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)})) |
13 | rusgrnumwwlkg.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
14 | 13 | rusgrnumwwlkg 29859 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (𝐾↑𝑁)) |
15 | 12, 14 | eqtr3d 2767 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}) = (𝐾↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {crab 3418 Vcvv 3461 class class class wbr 5149 –1-1-onto→wf1o 6548 ‘cfv 6549 (class class class)co 7419 1st c1st 7992 2nd c2nd 7993 Fincfn 8964 0cc0 11140 ℕ0cn0 12505 ↑cexp 14062 ♯chash 14325 Vtxcvtx 28881 USPGraphcuspgr 29033 USGraphcusgr 29034 RegUSGraph crusgr 29442 Walkscwlks 29482 WWalksN cwwlksn 29709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-oi 9535 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-xnn0 12578 df-z 12592 df-uz 12856 df-rp 13010 df-xadd 13128 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-hash 14326 df-word 14501 df-lsw 14549 df-concat 14557 df-s1 14582 df-substr 14627 df-pfx 14657 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-sum 15669 df-vtx 28883 df-iedg 28884 df-edg 28933 df-uhgr 28943 df-ushgr 28944 df-upgr 28967 df-umgr 28968 df-uspgr 29035 df-usgr 29036 df-fusgr 29202 df-nbgr 29218 df-vtxdg 29352 df-rgr 29443 df-rusgr 29444 df-wlks 29485 df-wwlks 29713 df-wwlksn 29714 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |