| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgrnumwlkg | Structured version Visualization version GIF version | ||
| Description: In a k-regular graph, the number of walks of a fixed length n from a fixed vertex is k to the power of n. This theorem corresponds to statement 11 in [Huneke] p. 2: "The total number of walks v(0) v(1) ... v(n-2) from a fixed vertex v = v(0) is k^(n-2) as G is k-regular." This theorem even holds for n=0: then the walk consists of only one vertex v(0), so the number of walks of length n=0 starting with v=v(0) is 1=k^0. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.) (Proof shortened by AV, 5-Aug-2022.) |
| Ref | Expression |
|---|---|
| rusgrnumwwlkg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| rusgrnumwlkg | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}) = (𝐾↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7423 | . . . 4 ⊢ (𝑁 WWalksN 𝐺) ∈ V | |
| 2 | 1 | rabex 5297 | . . 3 ⊢ {𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃} ∈ V |
| 3 | rusgrusgr 29499 | . . . . . 6 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) | |
| 4 | usgruspgr 29114 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USPGraph) |
| 6 | simp3 1138 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 7 | wlksnwwlknvbij 29845 | . . . . 5 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) → ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) | |
| 8 | 5, 6, 7 | syl2an 596 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) |
| 9 | f1oexbi 7907 | . . . 4 ⊢ (∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)} ↔ ∃𝑓 𝑓:{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}–1-1-onto→{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}) |
| 11 | hasheqf1oi 14323 | . . 3 ⊢ ({𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃} ∈ V → (∃𝑔 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}–1-1-onto→{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)} → (♯‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}))) | |
| 12 | 2, 10, 11 | mpsyl 68 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)})) |
| 13 | rusgrnumwwlkg.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 14 | 13 | rusgrnumwwlkg 29913 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑝‘0) = 𝑃}) = (𝐾↑𝑁)) |
| 15 | 12, 14 | eqtr3d 2767 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑃)}) = (𝐾↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {crab 3408 Vcvv 3450 class class class wbr 5110 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 Fincfn 8921 0cc0 11075 ℕ0cn0 12449 ↑cexp 14033 ♯chash 14302 Vtxcvtx 28930 USPGraphcuspgr 29082 USGraphcusgr 29083 RegUSGraph crusgr 29491 Walkscwlks 29531 WWalksN cwwlksn 29763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-rp 12959 df-xadd 13080 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-vtx 28932 df-iedg 28933 df-edg 28982 df-uhgr 28992 df-ushgr 28993 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-fusgr 29251 df-nbgr 29267 df-vtxdg 29401 df-rgr 29492 df-rusgr 29493 df-wlks 29534 df-wwlks 29767 df-wwlksn 29768 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |