MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwlkg Structured version   Visualization version   GIF version

Theorem rusgrnumwlkg 29495
Description: In a k-regular graph, the number of walks of a fixed length n from a fixed vertex is k to the power of n. This theorem corresponds to statement 11 in [Huneke] p. 2: "The total number of walks v(0) v(1) ... v(n-2) from a fixed vertex v = v(0) is k^(n-2) as G is k-regular." This theorem even holds for n=0: then the walk consists of only one vertex v(0), so the number of walks of length n=0 starting with v=v(0) is 1=k^0. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.) (Proof shortened by AV, 5-Aug-2022.)
Hypothesis
Ref Expression
rusgrnumwwlkg.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
rusgrnumwlkg ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜{𝑀 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑃)}) = (𝐾↑𝑁))
Distinct variable groups:   𝑀,𝐺   𝑀,𝐾   𝑀,𝑁   𝑀,𝑃   𝑀,𝑉

Proof of Theorem rusgrnumwlkg
Dummy variables 𝑓 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7445 . . . 4 (𝑁 WWalksN 𝐺) ∈ V
21rabex 5333 . . 3 {𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃} ∈ V
3 rusgrusgr 29085 . . . . . 6 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USGraph)
4 usgruspgr 28702 . . . . . 6 (𝐺 ∈ USGraph β†’ 𝐺 ∈ USPGraph)
53, 4syl 17 . . . . 5 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USPGraph)
6 simp3 1137 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝑁 ∈ β„•0)
7 wlksnwwlknvbij 29426 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑃)}–1-1-ontoβ†’{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃})
85, 6, 7syl2an 595 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑃)}–1-1-ontoβ†’{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃})
9 f1oexbi 7922 . . . 4 (βˆƒπ‘” 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃}–1-1-ontoβ†’{𝑀 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑃)} ↔ βˆƒπ‘“ 𝑓:{𝑀 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑃)}–1-1-ontoβ†’{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃})
108, 9sylibr 233 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ βˆƒπ‘” 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃}–1-1-ontoβ†’{𝑀 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑃)})
11 hasheqf1oi 14316 . . 3 ({𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃} ∈ V β†’ (βˆƒπ‘” 𝑔:{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃}–1-1-ontoβ†’{𝑀 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑃)} β†’ (β™―β€˜{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃}) = (β™―β€˜{𝑀 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑃)})))
122, 10, 11mpsyl 68 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃}) = (β™―β€˜{𝑀 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑃)}))
13 rusgrnumwwlkg.v . . 3 𝑉 = (Vtxβ€˜πΊ)
1413rusgrnumwwlkg 29494 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜{𝑝 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘β€˜0) = 𝑃}) = (𝐾↑𝑁))
1512, 14eqtr3d 2773 1 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (β™―β€˜{𝑀 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑃)}) = (𝐾↑𝑁))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540  βˆƒwex 1780   ∈ wcel 2105  {crab 3431  Vcvv 3473   class class class wbr 5149  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544  (class class class)co 7412  1st c1st 7976  2nd c2nd 7977  Fincfn 8942  0cc0 11113  β„•0cn0 12477  β†‘cexp 14032  β™―chash 14295  Vtxcvtx 28520  USPGraphcuspgr 28672  USGraphcusgr 28673   RegUSGraph crusgr 29077  Walkscwlks 29117   WWalksN cwwlksn 29344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-oadd 8473  df-er 8706  df-map 8825  df-pm 8826  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-oi 9508  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-rp 12980  df-xadd 13098  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-word 14470  df-lsw 14518  df-concat 14526  df-s1 14551  df-substr 14596  df-pfx 14626  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638  df-vtx 28522  df-iedg 28523  df-edg 28572  df-uhgr 28582  df-ushgr 28583  df-upgr 28606  df-umgr 28607  df-uspgr 28674  df-usgr 28675  df-fusgr 28838  df-nbgr 28854  df-vtxdg 28987  df-rgr 29078  df-rusgr 29079  df-wlks 29120  df-wwlks 29348  df-wwlksn 29349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator