MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgr0edg Structured version   Visualization version   GIF version

Theorem rusgr0edg 29954
Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgr0edg ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤
Allowed substitution hints:   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgr0edg
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → 𝑃𝑉)
2 nnnn0 12388 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
323ad2ant3 1135 . . 3 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
4 rusgrnumwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
5 rusgrnumwwlk.l . . . 4 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
64, 5rusgrnumwwlklem 29951 . . 3 ((𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
71, 3, 6syl2anc 584 . 2 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
8 rusgrusgr 29543 . . . . . . . . . 10 (𝐺 RegUSGraph 0 → 𝐺 ∈ USGraph)
9 usgr0edg0rusgr 29554 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (𝐺 RegUSGraph 0 ↔ (Edg‘𝐺) = ∅))
109biimpcd 249 . . . . . . . . . 10 (𝐺 RegUSGraph 0 → (𝐺 ∈ USGraph → (Edg‘𝐺) = ∅))
118, 10mpd 15 . . . . . . . . 9 (𝐺 RegUSGraph 0 → (Edg‘𝐺) = ∅)
12 0enwwlksnge1 29842 . . . . . . . . 9 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)
1311, 12sylan 580 . . . . . . . 8 ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)
14 eleq2 2820 . . . . . . . . 9 ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑤 ∈ ∅))
15 noel 4285 . . . . . . . . . 10 ¬ 𝑤 ∈ ∅
1615pm2.21i 119 . . . . . . . . 9 (𝑤 ∈ ∅ → ¬ (𝑤‘0) = 𝑃)
1714, 16biimtrdi 253 . . . . . . . 8 ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃))
1813, 17syl 17 . . . . . . 7 ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃))
19183adant2 1131 . . . . . 6 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃))
2019ralrimiv 3123 . . . . 5 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃)
21 rabeq0 4335 . . . . 5 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃)
2220, 21sylibr 234 . . . 4 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅)
2322fveq2d 6826 . . 3 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘∅))
24 hash0 14274 . . 3 (♯‘∅) = 0
2523, 24eqtrdi 2782 . 2 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 0)
267, 25eqtrd 2766 1 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  c0 4280   class class class wbr 5089  cfv 6481  (class class class)co 7346  cmpo 7348  0cc0 11006  cn 12125  0cn0 12381  chash 14237  Vtxcvtx 28974  Edgcedg 29025  USGraphcusgr 29127   RegUSGraph crusgr 29535   WWalksN cwwlksn 29804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-xadd 13012  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-usgr 29129  df-vtxdg 29445  df-rgr 29536  df-rusgr 29537  df-wwlks 29808  df-wwlksn 29809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator