![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgr0edg | Structured version Visualization version GIF version |
Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
rusgrnumwwlk.l | ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
Ref | Expression |
---|---|
rusgr0edg | ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1138 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ 𝑉) | |
2 | nnnn0 12428 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 2 | 3ad2ant3 1136 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
4 | rusgrnumwwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | rusgrnumwwlk.l | . . . 4 ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) | |
6 | 4, 5 | rusgrnumwwlklem 28964 | . . 3 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
7 | 1, 3, 6 | syl2anc 585 | . 2 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
8 | rusgrusgr 28561 | . . . . . . . . . 10 ⊢ (𝐺 RegUSGraph 0 → 𝐺 ∈ USGraph) | |
9 | usgr0edg0rusgr 28572 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ USGraph → (𝐺 RegUSGraph 0 ↔ (Edg‘𝐺) = ∅)) | |
10 | 9 | biimpcd 249 | . . . . . . . . . 10 ⊢ (𝐺 RegUSGraph 0 → (𝐺 ∈ USGraph → (Edg‘𝐺) = ∅)) |
11 | 8, 10 | mpd 15 | . . . . . . . . 9 ⊢ (𝐺 RegUSGraph 0 → (Edg‘𝐺) = ∅) |
12 | 0enwwlksnge1 28858 | . . . . . . . . 9 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) | |
13 | 11, 12 | sylan 581 | . . . . . . . 8 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) |
14 | eleq2 2823 | . . . . . . . . 9 ⊢ ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑤 ∈ ∅)) | |
15 | noel 4294 | . . . . . . . . . 10 ⊢ ¬ 𝑤 ∈ ∅ | |
16 | 15 | pm2.21i 119 | . . . . . . . . 9 ⊢ (𝑤 ∈ ∅ → ¬ (𝑤‘0) = 𝑃) |
17 | 14, 16 | syl6bi 253 | . . . . . . . 8 ⊢ ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
18 | 13, 17 | syl 17 | . . . . . . 7 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
19 | 18 | 3adant2 1132 | . . . . . 6 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
20 | 19 | ralrimiv 3139 | . . . . 5 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃) |
21 | rabeq0 4348 | . . . . 5 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃) | |
22 | 20, 21 | sylibr 233 | . . . 4 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅) |
23 | 22 | fveq2d 6850 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘∅)) |
24 | hash0 14276 | . . 3 ⊢ (♯‘∅) = 0 | |
25 | 23, 24 | eqtrdi 2789 | . 2 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 0) |
26 | 7, 25 | eqtrd 2773 | 1 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3061 {crab 3406 ∅c0 4286 class class class wbr 5109 ‘cfv 6500 (class class class)co 7361 ∈ cmpo 7363 0cc0 11059 ℕcn 12161 ℕ0cn0 12421 ♯chash 14239 Vtxcvtx 27996 Edgcedg 28047 USGraphcusgr 28149 RegUSGraph crusgr 28553 WWalksN cwwlksn 28820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-n0 12422 df-xnn0 12494 df-z 12508 df-uz 12772 df-xadd 13042 df-fz 13434 df-fzo 13577 df-hash 14240 df-word 14412 df-edg 28048 df-uhgr 28058 df-upgr 28082 df-uspgr 28150 df-usgr 28151 df-vtxdg 28463 df-rgr 28554 df-rusgr 28555 df-wwlks 28824 df-wwlksn 28825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |