![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgr0edg | Structured version Visualization version GIF version |
Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
rusgrnumwwlk.l | ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
Ref | Expression |
---|---|
rusgr0edg | ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ 𝑉) | |
2 | nnnn0 12510 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 2 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
4 | rusgrnumwwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | rusgrnumwwlk.l | . . . 4 ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) | |
6 | 4, 5 | rusgrnumwwlklem 29794 | . . 3 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
7 | 1, 3, 6 | syl2anc 583 | . 2 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
8 | rusgrusgr 29391 | . . . . . . . . . 10 ⊢ (𝐺 RegUSGraph 0 → 𝐺 ∈ USGraph) | |
9 | usgr0edg0rusgr 29402 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ USGraph → (𝐺 RegUSGraph 0 ↔ (Edg‘𝐺) = ∅)) | |
10 | 9 | biimpcd 248 | . . . . . . . . . 10 ⊢ (𝐺 RegUSGraph 0 → (𝐺 ∈ USGraph → (Edg‘𝐺) = ∅)) |
11 | 8, 10 | mpd 15 | . . . . . . . . 9 ⊢ (𝐺 RegUSGraph 0 → (Edg‘𝐺) = ∅) |
12 | 0enwwlksnge1 29688 | . . . . . . . . 9 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) | |
13 | 11, 12 | sylan 579 | . . . . . . . 8 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) |
14 | eleq2 2818 | . . . . . . . . 9 ⊢ ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑤 ∈ ∅)) | |
15 | noel 4331 | . . . . . . . . . 10 ⊢ ¬ 𝑤 ∈ ∅ | |
16 | 15 | pm2.21i 119 | . . . . . . . . 9 ⊢ (𝑤 ∈ ∅ → ¬ (𝑤‘0) = 𝑃) |
17 | 14, 16 | biimtrdi 252 | . . . . . . . 8 ⊢ ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
18 | 13, 17 | syl 17 | . . . . . . 7 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
19 | 18 | 3adant2 1129 | . . . . . 6 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
20 | 19 | ralrimiv 3142 | . . . . 5 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃) |
21 | rabeq0 4385 | . . . . 5 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃) | |
22 | 20, 21 | sylibr 233 | . . . 4 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅) |
23 | 22 | fveq2d 6901 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘∅)) |
24 | hash0 14359 | . . 3 ⊢ (♯‘∅) = 0 | |
25 | 23, 24 | eqtrdi 2784 | . 2 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 0) |
26 | 7, 25 | eqtrd 2768 | 1 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3058 {crab 3429 ∅c0 4323 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 0cc0 11139 ℕcn 12243 ℕ0cn0 12503 ♯chash 14322 Vtxcvtx 28822 Edgcedg 28873 USGraphcusgr 28975 RegUSGraph crusgr 29383 WWalksN cwwlksn 29650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-n0 12504 df-xnn0 12576 df-z 12590 df-uz 12854 df-xadd 13126 df-fz 13518 df-fzo 13661 df-hash 14323 df-word 14498 df-edg 28874 df-uhgr 28884 df-upgr 28908 df-uspgr 28976 df-usgr 28977 df-vtxdg 29293 df-rgr 29384 df-rusgr 29385 df-wwlks 29654 df-wwlksn 29655 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |