![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgr0edg | Structured version Visualization version GIF version |
Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
rusgrnumwwlk.l | ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
Ref | Expression |
---|---|
rusgr0edg | ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ 𝑉) | |
2 | nnnn0 12478 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 2 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
4 | rusgrnumwwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | rusgrnumwwlk.l | . . . 4 ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) | |
6 | 4, 5 | rusgrnumwwlklem 29221 | . . 3 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
7 | 1, 3, 6 | syl2anc 584 | . 2 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
8 | rusgrusgr 28818 | . . . . . . . . . 10 ⊢ (𝐺 RegUSGraph 0 → 𝐺 ∈ USGraph) | |
9 | usgr0edg0rusgr 28829 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ USGraph → (𝐺 RegUSGraph 0 ↔ (Edg‘𝐺) = ∅)) | |
10 | 9 | biimpcd 248 | . . . . . . . . . 10 ⊢ (𝐺 RegUSGraph 0 → (𝐺 ∈ USGraph → (Edg‘𝐺) = ∅)) |
11 | 8, 10 | mpd 15 | . . . . . . . . 9 ⊢ (𝐺 RegUSGraph 0 → (Edg‘𝐺) = ∅) |
12 | 0enwwlksnge1 29115 | . . . . . . . . 9 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) | |
13 | 11, 12 | sylan 580 | . . . . . . . 8 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) |
14 | eleq2 2822 | . . . . . . . . 9 ⊢ ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑤 ∈ ∅)) | |
15 | noel 4330 | . . . . . . . . . 10 ⊢ ¬ 𝑤 ∈ ∅ | |
16 | 15 | pm2.21i 119 | . . . . . . . . 9 ⊢ (𝑤 ∈ ∅ → ¬ (𝑤‘0) = 𝑃) |
17 | 14, 16 | syl6bi 252 | . . . . . . . 8 ⊢ ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
18 | 13, 17 | syl 17 | . . . . . . 7 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
19 | 18 | 3adant2 1131 | . . . . . 6 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
20 | 19 | ralrimiv 3145 | . . . . 5 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃) |
21 | rabeq0 4384 | . . . . 5 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃) | |
22 | 20, 21 | sylibr 233 | . . . 4 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅) |
23 | 22 | fveq2d 6895 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘∅)) |
24 | hash0 14326 | . . 3 ⊢ (♯‘∅) = 0 | |
25 | 23, 24 | eqtrdi 2788 | . 2 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 0) |
26 | 7, 25 | eqtrd 2772 | 1 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {crab 3432 ∅c0 4322 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 0cc0 11109 ℕcn 12211 ℕ0cn0 12471 ♯chash 14289 Vtxcvtx 28253 Edgcedg 28304 USGraphcusgr 28406 RegUSGraph crusgr 28810 WWalksN cwwlksn 29077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-xnn0 12544 df-z 12558 df-uz 12822 df-xadd 13092 df-fz 13484 df-fzo 13627 df-hash 14290 df-word 14464 df-edg 28305 df-uhgr 28315 df-upgr 28339 df-uspgr 28407 df-usgr 28408 df-vtxdg 28720 df-rgr 28811 df-rusgr 28812 df-wwlks 29081 df-wwlksn 29082 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |