MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgr0edg Structured version   Visualization version   GIF version

Theorem rusgr0edg 28967
Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgr0edg ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤
Allowed substitution hints:   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgr0edg
StepHypRef Expression
1 simp2 1138 . . 3 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → 𝑃𝑉)
2 nnnn0 12428 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
323ad2ant3 1136 . . 3 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
4 rusgrnumwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
5 rusgrnumwwlk.l . . . 4 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
64, 5rusgrnumwwlklem 28964 . . 3 ((𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
71, 3, 6syl2anc 585 . 2 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
8 rusgrusgr 28561 . . . . . . . . . 10 (𝐺 RegUSGraph 0 → 𝐺 ∈ USGraph)
9 usgr0edg0rusgr 28572 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (𝐺 RegUSGraph 0 ↔ (Edg‘𝐺) = ∅))
109biimpcd 249 . . . . . . . . . 10 (𝐺 RegUSGraph 0 → (𝐺 ∈ USGraph → (Edg‘𝐺) = ∅))
118, 10mpd 15 . . . . . . . . 9 (𝐺 RegUSGraph 0 → (Edg‘𝐺) = ∅)
12 0enwwlksnge1 28858 . . . . . . . . 9 (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)
1311, 12sylan 581 . . . . . . . 8 ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅)
14 eleq2 2823 . . . . . . . . 9 ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑤 ∈ ∅))
15 noel 4294 . . . . . . . . . 10 ¬ 𝑤 ∈ ∅
1615pm2.21i 119 . . . . . . . . 9 (𝑤 ∈ ∅ → ¬ (𝑤‘0) = 𝑃)
1714, 16syl6bi 253 . . . . . . . 8 ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃))
1813, 17syl 17 . . . . . . 7 ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃))
19183adant2 1132 . . . . . 6 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃))
2019ralrimiv 3139 . . . . 5 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃)
21 rabeq0 4348 . . . . 5 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃)
2220, 21sylibr 233 . . . 4 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅)
2322fveq2d 6850 . . 3 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘∅))
24 hash0 14276 . . 3 (♯‘∅) = 0
2523, 24eqtrdi 2789 . 2 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 0)
267, 25eqtrd 2773 1 ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3061  {crab 3406  c0 4286   class class class wbr 5109  cfv 6500  (class class class)co 7361  cmpo 7363  0cc0 11059  cn 12161  0cn0 12421  chash 14239  Vtxcvtx 27996  Edgcedg 28047  USGraphcusgr 28149   RegUSGraph crusgr 28553   WWalksN cwwlksn 28820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-n0 12422  df-xnn0 12494  df-z 12508  df-uz 12772  df-xadd 13042  df-fz 13434  df-fzo 13577  df-hash 14240  df-word 14412  df-edg 28048  df-uhgr 28058  df-upgr 28082  df-uspgr 28150  df-usgr 28151  df-vtxdg 28463  df-rgr 28554  df-rusgr 28555  df-wwlks 28824  df-wwlksn 28825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator