| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgr0edg | Structured version Visualization version GIF version | ||
| Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.) |
| Ref | Expression |
|---|---|
| rusgrnumwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| rusgrnumwwlk.l | ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
| Ref | Expression |
|---|---|
| rusgr0edg | ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ 𝑉) | |
| 2 | nnnn0 12388 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 3 | 2 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 4 | rusgrnumwwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | rusgrnumwwlk.l | . . . 4 ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) | |
| 6 | 4, 5 | rusgrnumwwlklem 29951 | . . 3 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
| 7 | 1, 3, 6 | syl2anc 584 | . 2 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
| 8 | rusgrusgr 29543 | . . . . . . . . . 10 ⊢ (𝐺 RegUSGraph 0 → 𝐺 ∈ USGraph) | |
| 9 | usgr0edg0rusgr 29554 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ USGraph → (𝐺 RegUSGraph 0 ↔ (Edg‘𝐺) = ∅)) | |
| 10 | 9 | biimpcd 249 | . . . . . . . . . 10 ⊢ (𝐺 RegUSGraph 0 → (𝐺 ∈ USGraph → (Edg‘𝐺) = ∅)) |
| 11 | 8, 10 | mpd 15 | . . . . . . . . 9 ⊢ (𝐺 RegUSGraph 0 → (Edg‘𝐺) = ∅) |
| 12 | 0enwwlksnge1 29842 | . . . . . . . . 9 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) | |
| 13 | 11, 12 | sylan 580 | . . . . . . . 8 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) |
| 14 | eleq2 2820 | . . . . . . . . 9 ⊢ ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑤 ∈ ∅)) | |
| 15 | noel 4285 | . . . . . . . . . 10 ⊢ ¬ 𝑤 ∈ ∅ | |
| 16 | 15 | pm2.21i 119 | . . . . . . . . 9 ⊢ (𝑤 ∈ ∅ → ¬ (𝑤‘0) = 𝑃) |
| 17 | 14, 16 | biimtrdi 253 | . . . . . . . 8 ⊢ ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
| 18 | 13, 17 | syl 17 | . . . . . . 7 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
| 19 | 18 | 3adant2 1131 | . . . . . 6 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
| 20 | 19 | ralrimiv 3123 | . . . . 5 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃) |
| 21 | rabeq0 4335 | . . . . 5 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃) | |
| 22 | 20, 21 | sylibr 234 | . . . 4 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅) |
| 23 | 22 | fveq2d 6826 | . . 3 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘∅)) |
| 24 | hash0 14274 | . . 3 ⊢ (♯‘∅) = 0 | |
| 25 | 23, 24 | eqtrdi 2782 | . 2 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 0) |
| 26 | 7, 25 | eqtrd 2766 | 1 ⊢ ((𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∅c0 4280 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 0cc0 11006 ℕcn 12125 ℕ0cn0 12381 ♯chash 14237 Vtxcvtx 28974 Edgcedg 29025 USGraphcusgr 29127 RegUSGraph crusgr 29535 WWalksN cwwlksn 29804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-xadd 13012 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-edg 29026 df-uhgr 29036 df-upgr 29060 df-uspgr 29128 df-usgr 29129 df-vtxdg 29445 df-rgr 29536 df-rusgr 29537 df-wwlks 29808 df-wwlksn 29809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |